Аддитивная функция
Аддитивная функция может означать:
- Аддитивная функция — функция , такая что для любых и выполняется .
- Аддитивная арифметическая функция[фр.] — функция , такая что для любых взаимно простых натуральных чисел и выполняется .
Аддитивная функция может означать:
Ме́ра мно́жества — числовая характеристика множества, интуитивно её можно понимать как массу множества при некотором распределении массы по пространству. Понятие меры множества возникло в теории функций вещественной переменной при развитии понятия интеграла.
Пло́щадь — в узком смысле, площадь фигуры — численная характеристика, вводимая для определённого класса плоских геометрических фигур и обладающая свойствами площади. Интуитивно, из этих свойств следует, что бо́льшая площадь фигуры соответствует её «большему размеру», a оценить площадь фигуры можно с помощью наложения на её рисунок сетки из линий, образующих одинаковые квадратики и подсчитав число квадратиков и их долей, попавших внутрь фигуры. В широком смысле понятие площади обобщается на k-мерные поверхности в n-мерном пространстве, в частности, на двумерную поверхность в трёхмерном пространстве.
Метри́ческое простра́нство — множество вместе со способом измерения расстояния между его элементами. Является центральным понятием геометрии и топологии.
Кольцо́ в общей алгебре — алгебраическая структура, в которой определены операция обратимого сложения и операция умножения, по свойствам похожие на соответствующие операции над числами. Простейшими примерами колец являются совокупности чисел, совокупности числовых функций, определённых на заданном множестве. Во всех случаях имеется множество, похожее на совокупности чисел в том смысле, что его элементы можно складывать и умножать, причём эти операции ведут себя естественным образом.
Ве́ктор — в простейшем случае математический объект, характеризующийся величиной и направлением. Например, в геометрии и в естественных науках вектор есть направленный отрезок прямой в евклидовом пространстве.
Уравне́ние — равенство вида
Ко́мпле́ксный ана́лиз, тео́рия фу́нкций ко́мпле́ксного переме́нного — раздел математического анализа, в котором рассматриваются и изучаются функции комплексного аргумента.
Моноид — полугруппа с нейтральным элементом. Более подробно, моноидом называется множество , на котором задана бинарная ассоциативная операция, обычно именуемая умножением, и в котором существует такой элемент , что для любого . Элемент называется единицей и часто обозначается . В любом моноиде имеется ровно одна единица.
Алгебра над полем — векторное пространство, снабжённое билинейным произведением. Это значит, что алгебра над полем является одновременно векторным пространством и кольцом, причём эти структуры согласованы. Обобщением этого понятия является алгебра над кольцом, которая, вообще говоря, является не векторным пространством, а модулем над некоторым кольцом.
Распределение вероятностей — это закон, описывающий область значений случайной величины и вероятности их исхода (появления).
Аналитическая функция вещественной переменной — функция, которая совпадает со своим рядом Тейлора в окрестности любой точки области определения.
Голоморфная функция, иногда называемая регулярной функцией — функция комплексного переменного, определённая на открытом подмножестве комплексной плоскости и комплексно дифференцируемая в каждой точке.
Ба́зис — упорядоченный набор векторов в векторном пространстве или модуле, такой, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого набора. Векторы базиса называются базисными векторами.
Обыкновенное дифференциальное уравне́ние (ОДУ) — дифференциальное уравнение для функции от одной переменной Таким образом, ОДУ — уравнения вида
Интегра́л — одно из важнейших понятий математического анализа, которое возникает при решении задач:
Порядок элемента в теории групп — наименьшее положительное целое , такое что -кратное групповое умножение данного элемента на себя даёт нейтральный элемент:
Аддитивная комбинаторика — междисциплинарная область математики, изучающая взаимозависимость различных количественных интерпретаций понятия структурированности подмножества группы, а также аналогичные свойства производных от множества структур, использующихся при этих интерпретациях. Кроме того, аддитивная комбинаторика изучает структурированность в различных смыслах некоторых специфических множеств или классов множеств.
Множество сумм — концепт аддитивной комбинаторики, соответствующий сумме Минковского конечных множеств.
Множество больших тригонометрических сумм — понятие теории чисел — множество индексов, в которых преобразование Фурье характеристической функции заданного подмножества группы принимает достаточно большие значения.
Некоторые ветви экономики и теории игр имеют дело с неделимыми товарами, дискретными объектами, которые можно передавать только как целое. Например, в комбинаторных аукционах имеется конечный набор объектов и каждый агент может купить подмножество предметов, но предмет не может быть разделён между двумя агентами.