Ме́ра мно́жества — числовая характеристика множества, интуитивно её можно понимать как массу множества при некотором распределении массы по пространству. Понятие меры множества возникло в теории функций вещественной переменной при развитии понятия интеграла.
Арифме́тика — раздел математики, изучающий числа, их отношения и свойства. Предметом арифметики является понятие числа и его свойства. В арифметике рассматриваются измерения, вычислительные операции и приёмы вычислений. Изучением свойств отдельных целых чисел занимается высшая арифметика, или теория чисел. Теоретическая арифметика уделяет внимание определению и анализу понятия числа, в то время как формальная арифметика оперирует логическими построениями предикатов и аксиом. Арифметика является древнейшей и одной из основных математических наук; она тесно связана с алгеброй, геометрией и теорией чисел.
Сложе́ние (прибавле́ние) — одна из основных бинарных математических операций двух аргументов (слагаемых), результатом которой является новое число (сумма), получаемое увеличением значения первого аргумента на значение второго аргумента. То есть каждой паре элементов из множества ставится в соответствие элемент , называемый суммой и . Это одна из четырёх элементарных математических операций арифметики. Приоритет её в обычном порядке операций равен приоритету вычитания, но ниже, чем у возведения в степень, извлечения корня, умножения и деления. На письме сложение обычно обозначается с помощью знака «плюс»: .
Сложение возможно, только если оба аргумента принадлежат одному множеству элементов. Так, на картинке справа запись обозначает три яблока и два яблока вместе, что в сумме даёт пять яблок. Но нельзя сложить, например, 3 яблока и 2 груши.
Идеал — одно из основных понятий общей алгебры. Наибольшее значение идеалы имеют в теории колец, но также определяются и для полугрупп, алгебр и некоторых других алгебраических структур. Название «идеал» ведёт своё происхождение от «идеальных чисел», которые были введены в 1847 году немецким математиком Э. Э. Куммером. Простейшим примером идеала может служить подкольцо чётных чисел в кольце целых чисел. Идеалы дают удобный язык для обобщения результатов теории чисел на общие кольца.
В теории множеств порядковым числом, или ординалом называется порядковый тип вполне упорядоченного множества. Как правило, порядковые числа отождествляются с наследственно транзитивными множествами. Ординалы представляют собой одно из расширений натуральных чисел, отличающееся как от целых, так и от кардинальных чисел. Как и другие разновидности чисел, их можно складывать, перемножать и возводить в степень. Бесконечные порядковые числа называют трансфинитными. Ординалы играют ключевую роль в доказательстве многих теорем теории множеств — в частности, благодаря связанному с ними принципу трансфинитной индукции.
Алгоритмы быстрого возведения в степень — алгоритмы, предназначенные для возведения числа в натуральную степень за меньшее число умножений, чем это требуется в определении степени. Многие из этих алгоритмов основаны на том, что для возведения числа в степень не обязательно перемножать число на само себя раз, а можно перемножать уже вычисленные степени. В частности, если степень двойки, то для возведения в степень достаточно число возвести в квадрат раз, затратив при этом умножений вместо . Например, чтобы возвести число в восьмую степень, вместо выполнения семи умножений можно возвести число в квадрат, потом результат возвести ещё раз в квадрат и получить четвёртую степень, и наконец результат ещё раз возвести в квадрат и получить ответ.
VMPC — это потоковый шифр, применяющийся в некоторых системах защиты информации в компьютерных сетях. Шифр разработан криптографом Бартошем Жултаком в качестве усиленного варианта популярного шифра RC4. Алгоритм VMPC строится как и любой потоковый шифр на основе параметризованного ключом генератора псевдослучайных битов. Основные преимущества шифра, как и RC4 — высокая скорость работы, переменный размер ключа и вектора инициализации, простота реализации.
Умноже́ние ма́триц — одна из основных операций над матрицами. Матрица, получаемая в результате операции умножения, называется произведе́нием ма́триц. Элементы новой матрицы получаются из элементов старых матриц в соответствии с правилами, проиллюстрированными ниже.
Цепо́чка — в прямом смысле слова — маленькая тонкая цепь. Также может означать:
Аддитивная комбинаторика — междисциплинарная область математики, изучающая взаимозависимость различных количественных интерпретаций понятия структурированности подмножества группы, а также аналогичные свойства производных от множества структур, использующихся при этих интерпретациях. Кроме того, аддитивная комбинаторика изучает структурированность в различных смыслах некоторых специфических множеств или классов множеств.
Функция Гильберта, ряд Гильберта и многочлен Гильберта градуированной коммутативной алгебры, конечно порождённой над полем — это три тесно связанных понятия, которые позволяют измерить рост размерности однородных компонент алгебры.
Практичное число или панаритмичное число — это положительное целое число n, такое что все меньшие положительные целые числа могут быть представлены в виде суммы различных делителей числа n. Например, 12 является практичным числом, поскольку все числа от 1 до 11 можно представить в виде суммы делителей 1, 2, 3, 4 и 6 этого числа — кроме самих делителей, мы имеем 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1 и 11 = 6 + 3 + 2.
В информатике префиксная сумма, кумулятивная сумма, инклюзивное сканирование или просто сканирование последовательности чисел x0, x1, x2, … называется последовательность чисел y0, y1, y2, …, являющаяся префиксной суммой от входной последовательности:
- y0 = x0
- y1 = x0 + x1
- y2 = x0 + x1+ x2
- …
Тригонометрическая сумма — это конечная сумма комплексных чисел, геометрически соответствующих векторам на единичной окружности, то есть вида
Аддити́вная тео́рия чи́сел — раздел теории чисел, возникший при изучении задач о разложении целых чисел на слагаемые заданного вида.