Физи́ческая хи́мия — раздел химии, наука об общих законах строения, структуры и превращения химических веществ. Исследует химические явления с помощью теоретических и экспериментальных методов физики. Наиболее обширный раздел химии.
Бе́та-части́цы — электроны и позитроны, которые вылетают из атомных ядер некоторых радиоактивных веществ при радиоактивном бета-распаде. Направление движения бета-частиц меняется магнитными и электрическими полями, что свидетельствует о наличии в них электрического заряда. Скорости электронов достигают 0,998 скорости света. Бета-частицы ионизируют газы, вызывают люминесценцию многих веществ, действующих на фотоплёнки. Поток бета-частиц называют бета-излучением.
Акти́ний — химический элемент 3-й группы седьмого периода Периодической системы элементов Д. И. Менделеева, с атомным номером 89.
Протакти́ний — химический элемент 3-й группы седьмого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 91.
Бе́рклий — искусственно полученный радиоактивный трансурановый химический элемент группы актиноидов с атомным номером 97. Берклий не имеет стабильных изотопов, наиболее долгоживущий нуклид 247Bk имеет период полураспада 1380 лет.
Калифо́рний — искусственный радиоактивный химический элемент, актиноид, обозначаемый Cf, имеющий атомный номер 98 в периодической системе Менделеева. Известны радиоизотопы с массовыми числами 237—256. Стабильных изотопов не имеет.
Геохимия — наука о химическом составе Земли и планет, законах распределения и движения элементов и изотопов в различных геологических средах, процессах формирования горных пород, почв и природных вод.
Ионизи́рующее излуче́ние — потоки фотонов и других элементарных частиц или атомных ядер, способные ионизировать вещество.
Радиохи́мия — область химии, изучающая химию радиоактивных изотопов, элементов и веществ, законы их физико-химического поведения, химию ядерных превращений и сопутствующих им физико-химических процессов. Термин «радиохимия» был впервые введен английским химиком Александром Камероном в 1910 г. Определяющим принципом радиохимии как науки является зависимость качественных изменений радиоактивных изотопов от изменения количественного состава ядра.
Радиоакти́вный распа́д — спонтанное изменение состава или внутреннего строения нестабильных атомных ядер путём испускания элементарных частиц, гамма-квантов и/или ядерных фрагментов. Процесс радиоактивного распада также называют радиоакти́вностью, а соответствующие нуклиды — радиоактивными (радионуклидами). Радиоактивными называют также вещества, содержащие радиоактивные ядра.
В физике излучение — передача энергии в форме волн или частиц через пространство или через материальную среду. Это понятие включает в себя:
- электромагнитное излучение — радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское излучение и гамма-излучение (γ);
- излучение частиц — альфа-излучение (α), бета-излучение (β), нейтронное и нейтринное излучение ;
- акустическое излучение — ультразвуковые, звуковые и сейсмические волны ;
- гравитационное излучение — излучение, которое принимает форму гравитационных волн, или рябь в кривизне пространства-времени.
Нейтронное излучение возникает при ядерных реакциях . Свободный нейтрон — это нестабильная, электрически нейтральная частица с временем жизни около 15 минут.
Дете́кторы прямо́го заря́́да относятся к так называемым зарядовым датчиками. Зарядовые датчики — датчики с принудительным собиранием заряда и датчики, генерирующие электрический заряд . По механизму образования заряда ДПЗ подразделяют на:
- активационные
- комптоновские
- деления.
Я́дерная хи́мия — раздел физической химии и химии высоких энергий — изучает ядерные реакции и сопутствующие им физико-химические процессы, устанавливает взаимосвязь между физико-химическими и ядерными свойствами вещества. Важнейшей задачей ядерной химии является выделение и идентификация радиохимическими методами продуктов ядерных реакций. В тематику исследований также входит химии горячих атомов, возникающих при ядерном распаде и имеющих избыточную кинетическую энергию, формально соответствующую температурам 104—107 К. Исследования в области ядерной химии послужили основой для Мёсбауэровской спектроскопии, как метода, широко используемого в структурной и радиационной химии, аналитической химии, химической кинетике, геохимии. Методами ядерной химии с использованием «новых атомов», и прежде всего позитрония (Ps) и мюония (Мu), изучают превращения атомов в различных химических системах — мезонная химия. Часто термин «ядерная химия» считают синонимом терминов «радиохимии» и «радиационной химии», что неверно.
Наведённая радиоактивность — это радиоактивность веществ, возникающая под действием облучения их ионизирующим излучением, особенно нейтронами.
Нейтро́нный захва́т — вид ядерной реакции, в которой ядро атома соединяется с нейтроном и образует более тяжёлое ядро:
- (A, Z) + n → + γ.
Ядерные технологии — совокупность инженерных решений, позволяющих использовать ядерные реакции или ионизирующее излучение. Наиболее известные сферы применения ядерных технологий ядерная энергетика, ядерная медицина, ядерное оружие.
Радиевый институт имени В. Г. Хлопина является первой в России организацией, в стенах которой проходило становление и развитие атомной науки и техники. Здесь впервые начали фундаментально исследовать явление радиоактивности, свойства радиоактивных веществ, создали первый в Европе циклотрон, здесь разработали первую в СССР технологию выделения плутония из облучённого урана. Организованный в начале 1922 г. институт имеет комплексный характер, который подтверждается работами института по ядерной физике, радиохимии, радиоэкологии, радиогеохимии, по разработке технологии и приёмов производства радионуклидов и радионуклидных источников разнообразного назначения, в том числе и производство радиофармпрепаратов для диагностики и терапии.
Институт ядерной физики Академии наук Республики Узбекистан — научно-исследовательский институт Академии наук Республики Узбекистан, занимающийся исследованиями в области ядерной физики. В институте проводятся фундаментальные и прикладные исследования по физике ядра и элементарных частиц, физике твёрдого тела, активационному анализу и радиохимии, научному приборостроению и ряду других актуальных научных направлений. Сегодня это один из крупнейших научных институтов Центральной Азии.
В химии, нейтронно-активационный анализ (НАА) — это ядерный процесс, используемый для определения концентраций элементов в образце. НАА позволяет дискретным образом определять элементы, так как не учитывает химическую форму образца, и сосредотачивается исключительно на ядрах элементов. Метод основан на нейтронной активации и, следовательно, требуется источник нейтронов. Образец подвергается бомбардировке нейтронами, в результате чего образуются элементы с радиоактивными изотопами, обладающими коротким периодом полураспада. Радиоактивное излучение и радиоактивный распад хорошо известны для каждого элемента. Используя эту информацию, можно изучать спектры излучения радиоактивного образца и определять в нём концентрации элементов. Особым преимуществом этого метода является то, что он не разрушает образец, а продолжительность наведенной радиации обычно составляет от нескольких наносекунд до часов. Метод используется для анализа произведений искусства и исторических артефактов. НАА также может быть использован для определения активности радиоактивных образцов и благородных металлов в рудах.