А́лгебра — раздел математики, который можно нестрого охарактеризовать как обобщение и расширение арифметики; в этом разделе числа и другие математические объекты обозначаются буквами и другими символами, что позволяет записывать и исследовать их свойства в самом общем виде. Слово «алгебра» также употребляется в общей алгебре в названиях различных алгебраических систем. В более широком смысле под «алгеброй» понимают раздел математики, посвящённый изучению операций над элементами множеств произвольной природы, обобщающий обычные операции сложения и умножения чисел.
Лине́йная а́лгебра — раздел алгебры, изучающий математические объекты линейной природы: векторные пространства, линейные отображения, системы линейных уравнений. Среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно также считаются составными частями линейной алгебры. Такие объекты как квадратичные и билинейные формы, тензоры и операции как тензорное произведение непосредственно вытекают из изучения линейных пространств, но как таковые относятся к полилинейной алгебре.
Теория чисел или высшая арифметика — раздел математики, первоначально изучавший свойства целых чисел. В современной теории чисел рассматриваются и другие типы чисел — например, алгебраические и трансцендентные, а также функции различного происхождения, которые связаны с арифметикой целых чисел и их обобщений.
В физике квантова́ние — построение квантового варианта некоторой неквантовой (классической) теории или физической модели в соответствии с аксиомами квантовой физики.
И́мпульс — векторная физическая величина, являющаяся мерой механического движения тела.
Волнова́я фу́нкция, или пси-фу́нкция — комплекснозначная функция, используемая в квантовой механике для математического описания чистого квантового состояния изолированной квантовомеханической системы. Наиболее распространённые символы для волновой функции — греческие буквы ψ и Ψ. Является коэффициентом разложения вектора состояния по базису. Например, при разложении по координатному базису:
Принцип неопределённости Гейзенбе́рга в квантовой механике — фундаментальное соображение, устанавливающее предел точности одновременного определения пары характеризующих систему квантовых наблюдаемых, описываемых некоммутирующими операторами.
Втори́чное квантова́ние — метод описания многочастичных квантовомеханических систем. Наиболее часто этот метод применяется для задач квантовой теории поля и в многочастичных задачах физики конденсированных сред.
Теория представлений — раздел математики, изучающий абстрактные алгебраические структуры с помощью представления их элементов в виде линейных преобразований векторных пространств. В сущности, представление делает абстрактные алгебраические объекты более конкретными, описывая их элементы матрицами, а операции сложения и умножения этих объектов — сложением и умножением матриц. Среди объектов, поддающихся такому описанию, находятся группы, ассоциативные алгебры и алгебры Ли. Наиболее известной является теория представлений групп.
Математические основы квантовой механики — принятый в квантовой механике способ математического моделирования квантовомеханических явлений, позволяющий вычислять численные значения наблюдаемых в квантовой механике величин. Были созданы Луи де-Бройлем, В. Гейзенбергом, Э. Шрёдингером, Н. Бором. Завершил создание математических основ квантовой механики и придал им современную форму П. А. М. Дирак. Отличительным признаком математических уравнений квантовой механики является наличие в них символа постоянной Планка.
Бра и кет — алгебраический формализм, предназначенный для описания квантовых состояний. Называется также обозначениями Дирака. В матричной механике данная система обозначений является общепринятой. Данная система обозначений представляет собой не более чем иные текстуальные обозначения для векторов, ковекторов, билинейных форм и скалярных произведений, и потому применима в линейной алгебре вообще. В тех случаях, когда данная система обозначений используется в линейной алгебре, обычно речь идет о бесконечно-мерных пространствах и/или о линейной алгебре над комплексными числами.
Операторная алгебра — алгебра операторов, действующих на топологическом векторном пространстве. Операторные алгебры активно применяются в теории представлений и в дифференциальной геометрии, в квантовой механике и в квантовой статистической физике, в квантовой теории поля и в современной классической механике.
Ква́нтовая наблюда́емая является линейным самосопряжённым оператором, действующим на сепарабельном (комплексном) гильбертовом пространстве чистых состояний квантовой системы. В интуитивном физическом понимании норма оператора наблюдаемой представляет собой наибольшую абсолютную величину измеряемого числового значения физической величины.
Полилине́йная а́лгебра — раздел алгебры, обобщающий понятия линейной алгебры на функции нескольких переменных, линейные по каждому из аргументов.
Аксиоматическая квантовая теория поля — подход в квантовой теории поля, основанный на использовании физических аксиом, сформулированных в строгой математической форме.
-алгебра — банахова алгебра с инволюцией, удовлетворяющей свойствам сопряжённого оператора.
Операторы рождения и операторы уничтожения — это математические операторы, которые широко применяются в квантовой механике, особенно при изучении квантовых гармонических осцилляторов и многочастичных систем. В квантовой теории поля волновые функции квантованных полей имеют операторный смысл и распадаются на операторы рождения и уничтожения частиц. Оператор уничтожения уменьшает количество частиц в данном состоянии на единицу. Оператор рождения увеличивает количество частиц в заданном состоянии на единицу, он сопряжен к оператору уничтожения. Эти операторы используются вместо волновых функций во многих областях физики и химии. Понятие операторов рождения и уничтожения было введено в науку Полем Дираком.
ККС-алгебры и КАС-алгебры используются в математическом аппарате квантовой механики, квантовой статистической механики и квантовой теории поля при описании статистики и наблюдаемых свойств всех элементарных частиц: бозонов и фермионов, соответственно..
Сопряжённые переменные — пары переменных, математически взаимно связанные посредством преобразованием Фурье. или, вообще говоря, посредством двойственности Понтрягина. Отношения двойственности естественным образом приводят к соотношению неопределенности — в физике называемое принципом неопределённости Гейзенберга — между ними. В математических терминах сопряженные переменные являются частью симплектического базиса, а отношение неопределённости соответствует симплектической форме. Кроме того, сопряженные переменные связаны с помощью теоремы Нётер, которая гласит, что если свойства замкнутой физической системы инвариантны относительно изменения одной из сопряженных переменных, то другая сопряженная переменная в этой физической системе сохраняется со временем.