Магно́н — квазичастица, соответствующая элементарному возбуждению системы взаимодействующих спинов. В кристаллах с несколькими магнитными подрешётками могут существовать несколько сортов магнонов, имеющих различные энергетические спектры. Магноны подчиняются статистике Бозе — Эйнштейна. Магноны взаимодействуют друг с другом и с другими квазичастицами. Существование магнонов подтверждается экспериментами по рассеянию нейтронов, электронов и света, которое сопровождается рождением или уничтожением магнона.
Крото́вая нора́, или «крото́вина», «кротови́на», а также «червячный переход» или «червото́чина» — топологическая особенность пространства-времени, представляющая собой в каждый момент времени «тоннель» в пространстве. Эти области могут быть как связаны и помимо кротовой норы, представляя собой области единого пространства, так и полностью разъединены, представляя собой отдельные пространства, связанные между собой только посредством кротовой норы.
В физике элементарных частиц майора́новский фермио́н, или фермио́н Майора́ны — фермион, который является своей собственной античастицей. Существование таких частиц было впервые рассмотрено итальянским физиком Этторе Майораной в 1937 году. В экспериментах с полупроводниковыми нанопроволоками наблюдались квазичастицы, обладающие свойствами майорановского фермиона. Экспериментальное обнаружение майорановских частиц как в физике высоких энергий, так и в области физики твёрдого тела приведёт к важным последствиям для науки в целом.
Формализм Арновитта — Дезера — Мизнера, АДМ-формализм (англ. ADM formalism) — разработанная в 1959 году Ричардом Арновиттом, Стенли Дезером и Чарльзом Мизнером гамильтонова формулировка общей теории относительности. Она играет важную роль в квантовой гравитации и численной относительности.
Хамелео́н — гипотетическая элементарная частица, скалярный бозон с нелинейным самодействием, которое делает эффективную массу частицы зависящей от окружения. Такая частица может иметь малую массу в межгалактическом пространстве и большую — в экспериментах на Земле. Хамелеон — возможный носитель тёмной энергии и составная часть тёмной материи, возможная причина ускорения расширения Вселенной.
Глюбо́л — гипотетическая составная частица, образованная только из глюонов, удерживаемых в «глюонном мешке» вследствие сильного (цветового) взаимодействия между ними, и синглетная (нейтральная) по цвету. Ожидается, что глюболы имеют массу от 1 до 2 ГэВ; по более поздним расчётам в рамках решёточной модели квантовой хромодинамики масса основного состояния псевдоскалярного глюбола предсказывается в диапазоне 2,3—2,6 ГэВ.
Кольцеобразная сингулярность — понятие общей теории относительности для описания гравитационной сингулярности вращающейся чёрной дыры, или чёрной дыры Керра.
Фосфорен — двумерная аллотропная модификация фосфора, которая получается из чёрного фосфора разделённого на моноатомные слои. Структура фосфорена похожа на более известное соединение — графен, что нашло отражение в названии. В отличие от графена фосфорен является полупроводником с запрещённой зоной равной 1,75 эВ. Впервые фосфорен получен в 2014 году методом механического расщепления. Графен и фосфорен единственные стабильные простые вещества которые можно получить расщепляя трёхмерные кристаллы.
Джон Майкл Костерлиц — британский и американский физик, профессор физики в университете Брауна. Лауреат Нобелевской премии по физике (2016).
Список наблюдений гравитационных волн представляет собой список прямых наблюдений гравитационных волн, проведённых с момента их обнаружения, и относится к гравитационно-волновой астрономии. Впоследствии к наблюдениям LIGO подключились интерферометры Virgo в 2017 году и KAGRA в 2020 году.
X (3872) — субатомная частица, кандидат в экзотические мезоны с массой 3871,68 МэВ/с2, которая не вписывается в кварковую модель из-за необычных значений её квантовых чисел. Впервые была обнаружена в 2003 году в результате эксперимента Belle в Японии, а затем подтверждена рядом других экспериментальных коллабораций. Было предложено несколько объяснений её природы таких как мезонная молекула или пара дикварк-антидикварк (тетракварк).
Эксперимент Belle был проведён Belle Collaboration, международным сообществом из более чем 400 физиков и инженеров, в Исследовательской организации ускорителей высоких энергий (KEK) в Цукубе, префектура Ибараки, Япония. Эксперимент проводился с 1999 по 2010 год.
MINOS — эксперимент физики элементарных частиц, предназначенный для изучения феномена осцилляций нейтрино, впервые обнаруженных в эксперименте Супер-Камиоканде (Super-K) в 1998 году. Нейтрино, производимые NuMI в Фермилабе вблизи Чикаго, затем наблюдаются двумя детекторами, один расположен очень близко к тому месту, где производится нейтринный луч, и ещё один гораздо более крупный детектор, расположенный в 735 км в северной Миннесоте.
Гарри Зуль — американский физик немецкого происхождения, известный своими работами по физике конденсированного состояния. Член Национальной академии наук США (1976).
В физике дефазировка — это механизм, восстанавливающий классическое поведение квантовой системы. Она относится к способам, которыми когерентность вызванная возмущением со временем затухает, и система возвращается в состояние до возмущения. Это важный эффект в молекулярной и атомной спектроскопии, а также в физике конденсированного состояния мезоскопических устройств.
Волна зарядовой плотности (ВЗП) — это периодическое изменение плотности квантовой электронной жидкости и ионов остова металла, часто наблюдаемых в слоистых или линейных кристаллах. Электроны внутри ВЗП формируют стоячую волну и иногда могут вызывать электрический ток. Электроны в такой ВЗП, наподобие электронов в сверхпроводниках, могут распространяться в одномерной среде с высокой степенью корреляции. Однако, в отличие от сверхпроводника, электрический ток ВЗП часто течёт скачками, как вода, капающая из крана, из-за своих электростатических свойств. В ВЗП комбинированные эффекты закрепления и электростатических взаимодействий, вероятно, играют критическую роль в скачкообразном поведении тока ВЗП, как обсуждается в разделах ниже.
Александр Авраамович Голубов — профессор факультета наук и технологий университета Твенте (Нидерланды). В область его научных интересов входит изучение физики конденсированного состояния, в частности, транспортных и высокочастотных свойств сверхпроводников, эффектов близости и Джозефсона, квантовых процессов в электронных и магнитных устройствах. Опубликовал более 380 статей в рецензируемых журналах с общим количеством цитирований более 14000 и индексом Хирша = 56.
Эксперименты Хьюза и Древера представляют собой спектроскопические тесты изотропии массы и пространства. Хотя первоначально он задумывался как проверка принципа Маха, теперь он понимается как важная проверка лоренц-инвариантности. Как и в опыте Майкельсона — Морли, можно проверить существование предпочтительной системы отсчёта или других отклонений от лоренц-инвариантности, что также влияет на справедливость принципа эквивалентности. Таким образом, эти эксперименты касаются фундаментальных аспектов как специальной, так и общей теории относительности. В отличие от опытов типа Майкельсона — Морли, эксперименты Хьюза и Древера проверяют изотропию взаимодействий самой материи, то есть протонов, нейтронов и электронов. Достигнутая точность делает этот вид эксперимента одним из самых точных подтверждений теории относительности.
Большие дополнительные измерения, ADD,LED — собирательное название теорий физики элементарных частиц, предполагающих что четырёхмерное пространство-время Стандартной модели располагается на бране, погруженной в многомерное пространство, включающее, помимо четырёхмерного пространства-времени, большие или бесконечные дополнительные измерения. Электромагнитное, сильное и слабое взаимодействия действуют внутри четырех измерений этой браны, а гравитоны, кроме того, могут распространяться через дополнительные измерения. Предполагается, что на основе таких теорий можно найти решение ряда физических проблем: проблемы иерархии, проблемы космологической постоянной и т.д. Идея больших дополнительных измерений была выдвинута Нимой Аркани-Хамедом, Савасом Димопулосом и Джиа Двали в 1998 году. Предполагается, что излучение гравитонов в дополнительные измерения позволит экспериментально проверить теорию больших дополнительных измерений на современных ускорителях при энергиях столкновения порядка ТэВ. Один из способов проверить теорию заключается в столкновении двух протонов в Большом адронном коллайдере или электрона и позитрона в электронном ускорителе так, чтобы при их столкновении образовался гравитон, который мог бы излучиться в дополнительные измерения, что привело бы к уменьшению наблюдаемой энергии и поперечного импульса. До сих пор ни один эксперимент на Большом адронном коллайдере не обнаружил подобного эффекта.
Металл кагоме — один из типов ферромагнитных квантовых материалов в физике твёрдого тела. Атомная решётка в магните кагоме имеет многослойные перекрывающиеся треугольники и большие шестиугольные пустоты, похожие на узор «кагоме» в традиционном японском плетении корзин. Такая геометрия создает плоскую электронную зонную структуру с дираковскими переходами, в которой динамика низкоэнергетических электронов сильно коррелирует.