Анализ функций многих переменных

Перейти к навигацииПерейти к поиску

Многомерный анализ (также известный как многомерное или многовариантное исчисление) является обобщением дифференциального и интегрального исчислений для случая нескольких переменных.

Типичные операции

Пределы и непрерывность

Исследование пределов и непрерывности в многомерных пространствах приводит ко многим нелогичным и патологическим результатам, не свойственным функциям одной переменной. Например, существуют скалярные функции двух переменных, имеющих точки в области определения, которые при приближении вдоль произвольной прямой дают специфический предел, и дают другой предел при приближении вдоль параболы. Функция

стремится к нулю по любой прямой, проходящей через начало координат. Однако, когда к началу координат приближаются вдоль параболы , предел = 0.5. Так как пределы по разным траекториям не совпадают, предела не существует.

Функция имеет пределом число A при стремлении переменных , соответственно, к , если для каждого числа найдется такое число , что , то есть .

Функция называется непрерывной в точке , если предельное значение этой функции в точке существует и равно частному значению .

Функция называется непрерывной на множестве , если она непрерывна в каждой точке этого множества.

Понятие частной производной неизбежно возникает при попытке дифференцирования многомерных функции и в геометрическом смысле является производной от её части, на пересекающей в точке определения плоскости, которая в случае рассмотрения декартовой прямоугольной системы координат параллельна плоскости (O,,f), где О — точка пересечения координатных осей;  — частный аргумент точки дифференцирования; f — ордината точки. Рассматриваемая производная n-мерной функции будет обозначается как , что есть её дифференцирование по одному из аргументов:

где  — определенный аргумент; а символ является видоизмененной записью и отдельно не употребляется.

Частные производные могут быть объединены интересными способами для создания более сложных выражений производных. В векторном исчислении оператор набла () используется для определения понятий градиента, дивергенции, и ротора с точки зрения частных производных. Матрица частных производных — матрица Якоби — может использоваться для представления производной функции (отображения) между двумя пространствами произвольной размерности. Таким образом производная может быть представлена как линейное преобразование, которое изменяется в зависимости от точки из области определения функции.

Дифференциальные уравнения, содержащие частные производные, называют дифференциальными уравнениями в частных производных или (Д)УЧП. Эти уравнения как правило сложнее для решения чем обычные дифференциальные уравнения, которые содержат производные относительно только одной переменной.

Кратное интегрирование

Интеграл называется кратным интегралом, если . В случае он называется двойным, в случае  — тройным интегралом, а в случае произвольного  — n-кратным. Его обозначают также . При такой записи под символом следует понимать точку пространства , под символом  — произведение , а под знаком  — n-кратный интеграл по n-мерной области .

Кратный интеграл расширяет понятие интеграла на функции многих переменных. Двойные интегралы могут использоваться для вычисления объемов областей в пространстве. Теорема Тонелли — Фубини гарантирует, что кратный интеграл может быть вычислен как повторный интеграл.

Поверхностный интеграл и криволинейный интеграл используются для интегрирования по многообразиям, таким как поверхности и кривые.

Фундаментальная теорема анализа функций многих переменных

В математическом анализе функций одной переменной фундаментальная теорема устанавливает связь между производной и интегралом. Связь между производной и интегралом в анализе функций многих переменных воплощена в известных теоремах интегрирования векторного анализа:

При более углубленном изучении многомерного математического анализа видно, что эти четыре теоремы — частные случаи более общей теоремы, теоремы Стокса об интегрировании дифференциальных форм.

Применение

Методы многомерного математического анализа используются для изучения многих объектов в физическом мире.

ОбластьПрименимые методы
КривыеДлины кривых, Криволинейные интегралы, и кривизна.
ПоверхностиПлощади поверхностей, поверхностные интегралы, поток через поверхности, и кривизна.
Скалярные поляМаксимумы и минимумы, множители Лагранжа, производные по направлениям.
Векторные поляЛюбая из операций векторного анализа, включая градиент, дивергенцию, и ротор.

Многомерный математический анализ может быть применен для анализа детерминированных систем, которые имеют многочисленные степени свободы. Функции с независимыми переменными, соответствующими каждой из степеней свободы, часто используются для моделирования этих систем, и многомерный математический анализ обеспечивает средства для того, чтобы охарактеризовать системную динамику.

Многомерный математический анализ используется во многих областях естествознания, социологии и инженерии для моделирования и изучения высоко-размерных систем, которые показывают детерминированное поведение. Недетерминированные, или стохастические (случайные) системы могут быть изучены, используя другой вид математики, такой как стохастическое исчисление.

См. также

Литература

  • Фихтенгольц, Г. М. Глава пятая. Функции нескольких переменных // Курс дифференциального и интегрального исчисления. — Т. 1.
  • Ильин, В. А., Позняк, Э. Г. Глава 14. Функции нескольких переменных // Основы математического анализа. — Т. 1. — (Курс высшей математики и математической физики).
  • Ильин, В. А., Позняк, Э. Г. Глава 2. Двойные и n-кратные интегралы // Основы математического анализа. — Т. 2. — (Курс высшей математики и математической физики).
  • Кудрявцев, Л. Д. Главы 4, 5. Дифференциальное исчисление функций многих переменных. Интегральное исчисление функций многих переменных // Краткий курс математического анализа. — Т. 2.
  • Выгодский М.Я. Дифференциирование и интегрирований функций нескольких аргументов // Справочник по высшей математике.

Ссылки