Евкли́дово простра́нство в изначальном смысле — это пространство, свойства которого описываются аксиомами евклидовой геометрии. В этом случае предполагается, что пространство имеет размерность, равную 3, то есть является трёхмерным.
Логика первого порядка — формальное исчисление, допускающее высказывания относительно переменных, фиксированных функций и предикатов. Расширяет логику высказываний.
Предика́т — это утверждение, высказанное о субъекте. Субъектом высказывания называется то, о чём делается утверждение. В лингвистике субъекту соответствует подлежащее, а предикату — сказуемое.
Дизъю́нкция, логи́ческое сложе́ние, логи́ческое ИЛИ, включа́ющее ИЛИ; иногда просто ИЛИ — логическая операция, по своему применению максимально приближённая к союзу «или» в смысле «или то, или это, или оба сразу».
Логика второго порядка в математической логике — формальная система, расширяющая логику первого порядка возможностью квантификации общности и существования не только над переменными, но и над предикатами и функциональными символами. Логика второго порядка несводима к логике первого порядка. В свою очередь, она расширяется логикой высших порядков и теорией типов.
Ква́нтор — общее название для логических операций, ограничивающих область истинности какого-либо предиката и создающих высказывание. Чаще всего упоминают:
- Квантор всеобщности.
- Квантор существования.
- Квантор единственности.
Трои́чная ло́гика — один из видов многозначной логики, предложенный Яном Лукасевичем в 1920 году. Трёхзначная логика — исторически первая многозначная логика. Она является простейшим расширением двузначной логики.
Терм — выражение формального языка (системы) специального вида. По аналогии с естественным языком, где именная группа ссылается на объект, а целое предложение ссылается на факт, в математической логике терм обозначает математический объект, а формула обозначает математический факт. В частности, термы появляются как компоненты формулы.
Опера́тор — математическое отображение между множествами, в котором каждое из них наделено какой-либо дополнительной структурой. Понятие оператора используется в различных разделах математики для отличия от другого рода отображений ; точное значение зависит от контекста, например в функциональном анализе под операторами понимают отображения, ставящие в соответствие функции другую функцию.
Математи́ческая фо́рмула в математике, а также физике и других естественных науках — символическая запись высказывания, либо формы высказывания. Формула, наряду с термами, является разновидностью выражения формализованного языка. В более широком смысле формула — всякая чисто символьная запись, противопоставляемая в математике различным выразительным способам, имеющим геометрическую коннотацию: чертежам, графикам, диаграммам, графам и т. п.
Пра́вило резолю́ций — это правило вывода, восходящее к методу доказательства теорем через поиск противоречий; используется в логике высказываний и логике первого порядка. Правило резолюций, применяемое последовательно для списка резольвент, позволяет ответить на вопрос, существует ли в исходном множестве логических выражений противоречие. Правило резолюций предложено в 1930 году в докторской диссертации Жака Эрбрана для доказательства теорем в формальных системах первого порядка. Правило разработано Джоном Аланом Робинсоном в 1965 году.
Дизъюнкти́вная норма́льная фо́рма (ДНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид дизъюнкции конъюнкций литералов. Любая булева формула может быть приведена к ДНФ. Для этого можно использовать закон двойного отрицания, закон де Моргана, закон дистрибутивности. Дизъюнктивная нормальная форма удобна для автоматического доказательства теорем.
Многозначная логика — это логика высказываний, в которой существует более двух истинностных значений логического выражения. Традиционно, в классической логике Аристотеля, мы имеем дело только с двумя возможными значениями — «истиной» или «ложью». Однако данная двухзначная логика может быть дополнена до n — значной с n > 2. Наиболее популярными в литературе являются трехзначная логика, конечнозначная и бесконечнозначная логики.
Теория моделей — раздел математической логики, который занимается изучением связи между формальными языками и их интерпретациями или моделями. Название теория моделей было впервые предложено Альфредом Тарским в 1954 году. Основное развитие теория моделей получила в работах Тарского, Мальцева и Робинсона.
Дескрипцио́нная логика — язык представления знаний, позволяющий описывать понятия предметной области в недвусмысленном, формализованном виде, организованный по типу языков математической логики. Дескрипционные логики сочетают, с одной стороны, богатые выразительные возможности, а с другой — хорошие вычислительные свойства, такие как разрешимость и относительно невысокая вычислительная сложность основных логических проблем, что делает возможным их применение на практике, обеспечивая компромисс между выразительностью и разрешимостью. Могут быть рассмотрены как разрешимые фрагменты логики предикатов, синтаксически же они близки к модальным логикам.
Секвенциальная логика — это логика памяти цифровых устройств. Название «секвенциальная» восходит к англ. sequential. Соответствующая логика может именоваться также как последовательностная, хотя последний термин по преимуществу употребляется в связи с логическими автоматами.
Арифметическое множество — множество натуральных чисел , которое может быть определено формулой в языке арифметики первого порядка, то есть если существует такая формула с одной свободной переменной , что . Аналогично, множество кортежей натуральных чисел называется арифметическим, если существует такая формула , что . Также можно говорить об арифметических множествах кортежей натуральных чисел, конечных последовательностей натуральных чисел, формул и, вообще, об арифметических множествах любых объектов, кодируемых натуральными числами.
Исчисление секвенций — вариант логических исчислений, использующий для доказательства утверждений не произвольные цепочки тавтологий, а последовательности условных суждений — секвенций. Наиболее известные исчисления секвенций — и для классического и интуиционистского исчислений предикатов — построены Генценом в 1934 году, позднее сформулированы секвенциальные варианты для широкого класса прикладных исчислений, теорий типов, неклассических логик.
В теории множеств и его приложениях к логике, математике и информатике форма записи множества — это математические обозначения для описания множества путём перечисления его элементов или указания свойств, которым элементы множества должны удовлетворять.