Лату́нь — двойной или многокомпонентный сплав на основе меди, где основным легирующим компонентом является цинк, иногда с добавлением олова, никеля, свинца, марганца, железа и других элементов. По металлургической классификации к бронзам не относится.
Леги́рование — добавление в состав материалов примесей для изменения (улучшения) физических и/или химических свойств основного материала. Легирование является обобщающим понятием ряда технологических процедур, различают объёмное (металлургическое) и поверхностное легирование.
Сталь — сплав железа с углеродом, содержащий не менее 45 % железа и в котором содержание углерода находится в диапазоне от 0,02 до 2,14 %, причём содержанию от 0,6 % до 2,14 % соответствует высокоуглеродистая сталь.
Нержавеющая сталь — легированная сталь, устойчивая к коррозии в атмосфере и агрессивных средах, обладающая термостойкими свойствами. Различные типы нержавеющей стали включают углерод, азот, алюминий, кремний, серу, титан, хром, никель, медь, селен, ниобий и молибден.
Быстроре́жущие ста́ли — легированные стали, предназначенные для изготовления металлорежущего инструмента, работающего при высоких скоростях резания.
О́тжиг — вид термической обработки, заключающийся в нагреве до определённой температуры, выдержке в течение определенного времени при этой температуре и последующем, обычно медленном, охлаждении до комнатной температуры. При отжиге осуществляются процессы возврата, рекристаллизации и гомогенизации. Цели отжига — снижение твёрдости для облегчения механической обработки, улучшение микроструктуры и достижение большей однородности металла, снятие внутренних напряжений.
Гомогенизация в металлургии — выравнивание химического состава сплава, растворение избыточных фаз — гомогенизация системы из смеси металлов и других компонентов сплавов.
Леги́рованная сталь — сталь, содержащая кроме железа и углерода другие специально вводимые в её состав элементы. Целью введения добавок может быть увеличение механических свойств, химическая или тепловая стойкость, магнитные качества.
Феррит, фазовая составляющая сплавов железа, представляющая собой твёрдый раствор углерода и легирующих элементов в α-железе (α-феррит). Имеет объёмноцентрированную кубическую кристаллическую решётку. Является фазовой составляющей других структур, например, перлита, состоящего из феррита и цементита.
Ледебурит — структурная составляющая железоуглеродистых сплавов, главным образом чугунов, представляющая собой эвтектическую смесь аустенита и цементита в интервале температур 727—1147 °C, или перлита и цементита ниже 727 °C. Назван в честь немецкого металлурга Карла Генриха Адольфа Ледебура, который открыл «железо-карбидные зёрна» в чугунах в 1882 г.
Мартенсит — микроструктура игольчатого (пластинчатого), а также реечного (пакетного) вида, наблюдаемая в закалённых металлических сплавах и в некоторых чистых металлах, которым свойственен полиморфизм. Мартенсит — основная структурная составляющая закалённой стали; представляет собой упорядоченный пересыщенный твёрдый раствор углерода в α-железе такой же концентрации, как у исходного аустенита. С превращением мартенсита при нагреве и охлаждении связан эффект памяти металлов и сплавов. Назван в честь немецкого металловеда Адольфа Мартенса. По аналогии термин также может относиться к любой кристаллической структуре, которая образована бездиффузионным преобразованием.
Жаропрочные сплавы — металлические материалы, обладающие высоким сопротивлением пластической деформации и разрушению при действии высоких температур и окислительных сред. Начало систематических исследований жаропрочных сплавов приходится на конец 1930-х годов — период нового этапа в развитии авиации, связанного с появлением реактивной авиации и газотурбинных двигателей (ГТД).
Зака́лка, или закаливание, — вид термической обработки материалов, заключающийся в их нагреве выше критической точки, с последующим быстрым охлаждением. Закалку металла для получения избытка вакансий не следует смешивать с обычной закалкой, для проведения которой необходимо, чтобы были возможные фазовые превращения в сплаве. Чаще всего охлаждение осуществляется в воде или масле, но существуют и другие способы охлаждения: в псевдокипящем слое твёрдого теплоносителя, струёй сжатого воздуха, водяным туманом, в жидкую полимерную закалочную среду и т. д.
Диагра́мма фа́зового равнове́сия желе́зо—углеро́д — графическое отображение фазового состояния сплавов железа с углеродом в зависимости от их химического состава и температуры.
Стандарт AISI - AISI (American Iron and Steel Institute) — Американский Институт Стали и Сплавов, разработавший собственную систему обозначения легированных и нержавеющих сталей. Данная система является наиболее часто применяемой в США и Европе.
Перли́т — одна из структурных составляющих железоуглеродистых сплавов — сталей и чугунов: представляет собой эвтектоидную смесь двух фаз — феррита и цементита.
Марки стали — это классификация сталей по их химическому составу и физическим свойствам. В России, США, Европе, Японии и Китае используются различные способы маркировки для аналогичных сталей.
Мартенси́тностареющие стали — стали, которые обладают очень большой прочностью и вязкостью без потери пластичности, хотя не могут быть хорошими материалами для лезвий. Эти стали представляют собой особый класс низкоуглеродных сверхпрочных сталей, обладающих таким свойством не из-за углерода, а из-за оседания интерметаллических соединений в процессе остаривания. Основной легирующий элемент — никель — составляет от 15 до 25 %. Для получения интерметаллических осадков добавляются вторичные легирующие металлы, такие как кобальт, молибден и титан. Первоначально производились стали с 20 и 25 % никеля, к которым были добавлены алюминий, титан и ниобий; рост цен на кобальт в конце 1970-х годов привёл к развитию не содержащих кобальта мартенситностареющих сталей.
Аустенитная нержавеющая сталь — особый тип нержавеющей стали. Нержавеющие стали могут быть классифицированы по их кристаллической структуре на четыре основных типа: аустенитная, ферритная, мартенситная и дуплексная. Аустенитные нержавеющие стали имеют аустенит в качестве своей первичной кристаллической структуры. Эта кристаллическая структура аустенита достигается достаточным добавлением аустенитных стабилизирующих элементов никеля, марганца и азота. Из-за специфической кристаллической структуры аустенитные стали не увеличивают твёрдость при тепловой обработке и не обладают магнитными свойствами.
Термомеханическая обработка металлов заключается в механической деформации при температуре, большей температуры фазового перехода, или между температурой фазового перехода и температурой мартенситного превращения. Термомеханическая обработка ограничена во времени, поскольку немедленно по завершении деформации металл быстро охлаждают (закалка), чтобы получить измельчённую, насыщенную дислокациями, структуру кристаллов металла. Обычная структура после закалки - мартенсит+бейнит+остаточный аустенит. Термомеханическую обработку применяют не только для сталей, но и других металлов.