
Фи́зика элемента́рных части́ц (ФЭЧ), часто называемая также субъядерной физикой — раздел физики, изучающий структуру и свойства элементарных частиц и их взаимодействия.

Антивещество́ — вещество, состоящее из античастиц, стабильно не образующееся в природе.
Античасти́ца — частица-двойник некоторой другой элементарной частицы, обладающая той же массой и тем же спином, отличающаяся от неё знаками всех других характеристик взаимодействия.

Тёмная мате́рия — в астрономии и космологии, а также в теоретической физике гипотетическая форма материи, не участвующая в электромагнитном взаимодействии и поэтому недоступная прямому наблюдению. Составляет порядка четверти массы-энергии Вселенной и проявляется только в гравитационном взаимодействии. Понятие тёмной материи введено для теоретического объяснения проблемы скрытой массы в эффектах аномально высокой скорости вращения внешних областей галактик и гравитационного линзирования ; среди прочих предложенных оно наиболее удовлетворительно.
Во́зраст Вселе́нной — время, прошедшее с начала расширения Вселенной.
Барио́нное число́ — сохраняющееся аддитивное квантовое число в физике элементарных частиц, определяющее количество барионов в системе. Оно определяется как:

Мате́рия — одно из основных понятий физики, общий термин, определяющийся множеством всего содержимого пространства-времени и влияющий на его свойства.
В физике элементарных частиц нарушение CP-инвариантности — это нарушение комбинированной чётности (CP-симметрии), то есть неинвариантность законов физики относительно операции зеркального отражения с одновременной заменой всех частиц на античастицы. Оно играет важную роль в теориях космологии, которые пытаются объяснить преобладание материи над антиматерией в нашей Вселенной. Открытие нарушения CP-симметрии в 1964 г. в процессах распада нейтральных каонов было отмечено Нобелевской премией по физике 1980 года. В 1967 г. А. Д. Сахаров показал, что CP-нарушение являлось одним из необходимых условий для практически полного уничтожения антивещества на раннем этапе развития Вселенной. В 1973 г., пытаясь найти объяснение CP-нарушению в распадах нейтральных каонов и отталкиваясь от идеи Николы Кабиббо о смешивании двух поколений кварков, Макото Кобаяси и Тосихидэ Маскава предсказали существование третьего. Действительно, b-кварк был открыт в 1977 г., t-кварк — в 1995. Предсказанные теорией Кобаяси и Маскавы различия свойств B и анти-B мезонов, включая прямое CP-нарушение, были экспериментально подтверждены BaBar и Belle в 2002—2007 годах, за что учёные были удостоены Нобелевской премии по физике 2008 г.
CPT-инвариантность — это фундаментальная симметрия физических законов при преобразованиях, включающих одновременную инверсию зарядового сопряжения, чётности и времени.

Распа́д прото́на — гипотетическая форма радиоактивного распада, в результате которой протон распадается на более лёгкие субатомные частицы, например (нейтральный) пион и позитрон. Это явление до сих пор не наблюдалось, но возможность доказать его реальность вызывает нарастающий интерес в связи с перспективами «теории Великого объединения».
Космологические модели — модели, описывающие развитие Вселенной как целого.

Асимметри́я — отсутствие или нарушение симметрии. Чаще всего термин употребляется в отношении визуальных объектов и в изобразительном искусстве. В художественном творчестве асимметрия может выступать в качестве одного из основных средств формообразования. Одно из близких понятий в искусстве — аритмия. Также термины асимметрия, асимметрический, асимметричный могут означать:
Антими́р — гипотетический космический объект, состоящий из антивещества. Антимир-антивселенная считается довольно похожим на нашу. Если окажется, что излучение материи и антиматерии хоть немного различается по частоте, это будет означать, что антимир-антивселенная не вполне идентичен нашему миру.

Магнитный альфа-спектрометр — физический прибор, предназначенный для изучения состава космических лучей, поиска антиматерии и тёмной материи. Первая версия подобного прибора (AMS-01) была установлена на шаттле Дискавери, который посещал орбитальную станцию Мир в 1998 году в рамках миссии STS-91. AMS-01 зарегистрировал около одного миллиона ядер гелия и подтвердил работоспособность концепции, что позволило создать новую улучшенную версию прибора. Запуск второй версии (AMS-02) произведён 16 мая 2011 года в рамках миссии STS-134, а 19 мая он был установлен на МКС. Работа прибора продлится 3 года, за которые он должен зарегистрировать около одного миллиарда ядер гелия и других ядер. Главным исследователем проекта выступает нобелевский лауреат Сэмюэл Тинг. Стоимость прибора оценивается в 2 млрд долларов США.
Комбинированная чётность, CP-симметрия, CP-инвариантность — это произведение двух симметрий: C — зарядовое сопряжение, которое превращает частицу в её античастицу, и P — чётность, которая создает зеркальное изображение физической системы. Сильное взаимодействие и электромагнитное взаимодействие являются инвариантными по отношению к комбинированной операции CP-преобразования, но эта симметрия немного нарушается в процессе некоторых типов слабого распада. Исторически CP-симметрия была предложена Львом Ландау для восстановления порядка после открытия нарушения пространственной чётности в 1950-е годы. Однако в 1964 году Джеймс Кронин и Вал Фитч показали, что CP-симметрия тоже может быть нарушена.
Барио́нная асимметри́я Вселе́нной — наблюдаемое преобладание в видимой части Вселенной вещества над антивеществом. Этот наблюдаемый факт не может быть объяснён в предположении исходной барионной симметрии во время Большого взрыва ни в рамках Стандартной модели, ни в рамках общей теории относительности — двух теорий, являющихся основой современной космологии. Наряду с пространственной плоскостностью наблюдаемой Вселенной и проблемой горизонта он представляет собой один из аспектов проблемы начальных значений в космологии.
Ниже приведён список нерешённых пробле́м совреме́нной фи́зики. Некоторые из этих проблем носят теоретический характер. Это означает, что существующие теории оказываются неспособными объяснить определённые наблюдаемые явления или экспериментальные результаты. Другие проблемы являются экспериментальными, а это означает, что имеются трудности в создании эксперимента по проверке предлагаемой теории или по более подробному исследованию какого-либо явления.
Фи́зика за преде́лами Станда́ртной моде́ли относится к теоретическим разработкам, которые необходимы, чтобы объяснить недостатки Стандартной модели, такие как происхождение массы, сильная CP-проблема, нейтринные осцилляции, асимметрия материи и антиматерии, происхождение тёмной материи и тёмной энергии. Другая проблема заключается в математических основах самой Стандартной модели — Стандартная модель не согласуется с общей теорией относительности в том смысле, что одна или обе теории распадаются в своих описаниях на более мелкие при определённых условиях.

Современные представления об основных этапах развития Вселенной основаны на следующих теориях:
- теории расширения Фридмана;
- теории Большого взрыва ;
- теории инфляции;
- иерархической теории формирования крупномасштабной структуры;
- теории звёздного населения.

«Гипер-Камиоканде» — нейтринная обсерватория и эксперимент, строящийся в Хида, Гифу, и в Токай, Ибараки, в Японии. Он проводится Токийским университетом и Организацией по исследованию ускорителей высокой энергии (KEK) в сотрудничестве с институтами из более чем 20 стран на шести континентах. Являясь преемником экспериментов Супер-Камиоканде и T2K, он предназначен для поиска распада протонов и обнаружения нейтрино от естественных источников, таких как Земля, атмосфера, Солнце и космос, а также для изучения нейтринных осцилляций в пучке нейтрино от ускорителя. Начало сбора данных запланировано на 2027 год.