Бездымный порох
Безды́мный по́рох (англ. Smokeless powder) или нитропорох (англ. nitro powder) — групповое название метательных взрывчатых веществ на основе нитрата целлюлозы, используемых в огнестрельном оружии и артиллерии, в твердотопливных ракетных двигателях, которые при сгорании не образуют твёрдых частиц (дыма), а только газообразные продукты сгорания, в отличие от дымного (чёрного) пороха.
Типы бездымного пороха включают кордит, баллистит и, традиционно, белый порох (англ. Poudre B). Они классифицируются на одноосновный, двухосновный и трёхосновный.
Описание
Бездымный порох состоит из нитроцеллюлозы (одноосновный), обычно с добавлением до пятидесяти процентов нитроглицерина (двухосновный), и иногда нитроглицерина в сочетании с нитрогуанидином (трёхосновный). Конечный продукт гранулируется в сферические частицы или прессуется в цилиндры или хлопья при помощи растворителей типа эфира. Также дополнительной составляющей бездымного пороха могут быть стабилизаторы и баллистические модификаторы.
Двухосновные порохи обычно используются в изготовлении патронов для стрелкового и охотничьего оружия, в то время как трёхосновные более широко применяются в артиллерии и двигателях ракет небольшого калибра.
Причина бездымности этих порохов состоит в том, что продукты окисления их ингредиентов в основном газообразны, по сравнению с чёрным порохом, выделяющим при сгорании до 55 % твердых веществ (карбонат калия, сульфат калия и пр.).
Бездымный порох горит только по поверхности гранул, хлопьев или цилиндров — для краткости, гранул. Бóльшие гранулы сгорают медленнее и скорость их сгорания также контролируется специальным покрытием, мешающим горению, основная функция которого — регулировать более-менее постоянное давление на вращающуюся пулю или снаряд, ещё не покинувшие ствол орудия, что позволяет им достигать максимальной скорости.
Самые большие гранулы в пушечном порохе. Они представляют собой цилиндр, достигающий размера пальца руки, в котором проделаны семь отверстий (одно по оси симметрии, а остальные шесть — расположены по кругу центрального поперечного сечения). Эти отверстия стабилизируют процесс горения благодаря тому, что пока внешняя поверхность, сгорая, уменьшает внешнюю площадь горения, сгорает и внутренняя поверхность, увеличивая внутреннюю площадь горения. Изнутри горение в грануле происходит быстрее, таким образом позволяя поддерживать давление в стволе постоянным, при увеличении в нём свободного пространства из-за движения пули/снаряда вперёд.
Быстрогорящие пистолетные пороха делаются таким образом, чтобы поверхность их гранул была максимальной, как у хлопьев или плоских дисков.
Сушат порох в основном в вакууме. При сушке растворители конденсируются и могут быть снова использованы в процессе изготовления. Гранулы также покрываются графитом с целью избежать их возгорания от искр статического электричества.
История
Пироксилин
Со времен Наполеона командующие войсками часто жаловались на невозможность отдавать приказы в бою из-за сильного задымления, вызванного порохом, использовавшимся в ружьях.
Большой прорыв вперёд был сделан с изобретением пироксилина — материала, основанного на нитроцеллюлозе. Он нашёл широкое применение в артиллерии.
Однако пироксилин имел ряд существенных недостатков. Пироксилин был более мощным, чем дымный порох, но в то же время менее стабильным, что делало его неподходящим для использования с огнестрельным оружием малых размеров — не только из-за большей опасности в полевых условиях, но и из-за повышенного износа оружия. Оружие, которое могло выстрелить тысячи раз обычным порохом, приходило в негодность после нескольких сотен выстрелов с более мощным пироксилином. Также происходило множество взрывов на фабриках по производству пироксилина из-за небрежного отношения к его нестабильности и средствам стабилизации.
По этим причинам применение пироксилина было приостановлено на двадцать с лишним лет, до тех пор пока люди не научились его «приручать». Лишь в 1880 году пироксилин стал жизнеспособным взрывчатым веществом.
Белый порох
В 1884 году Поль Вьель (Paul Vieille) изобрёл бездымный порох, названный Poudre B, который был основан на желатинизированной нитроклетчатке (68% нерастворимой в диэтиловом эфире тринитроцеллюлозы смешана с 30% растворённой в эфире динитроцеллюлозы с добавкой 2% парафина), с дальнейшим образованием пороховых элементов и последующей сушкой зёрен пороха.
Конечное взрывчатое вещество, которое в наши дни называют нитроцеллюлозой, содержит несколько меньшее количество азота, чем пироксилин, поэтому оно легче желатинизируется спирто-эфирной смесью. Большим достоинством данного пороха было то, что он, в отличие от пироксилина, горит послойно, что делало его баллистические свойства предсказуемыми.
Порох Вьеля произвёл революцию в мире стрелкового огнестрельного оружия по нескольким причинам:
- Больше практически не было дыма, тогда как ранее после нескольких выстрелов с использованием чёрного пороха поле зрения солдата сильно сужалось из-за клубов дыма, что мог исправить только сильный ветер. Кроме того, позиция стрелка не выдавалась клубом дыма из винтовки.
- Poudre B давал большую скорость вылета пули, что означало более прямую траекторию, что повышало точность и дальность стрельбы; дальность стрельбы достигла 1000 метров.
- Так как Poudre B был в три раза мощнее чёрного пороха, то его требовалось намного меньше. Боеприпасы облегчались, что позволяло войскам носить с собой большее количество боеприпасов при той же их массе.
- Патроны срабатывали, даже будучи мокрыми. Основанные же на чёрном порохе боеприпасы должны были храниться в сухом месте, поэтому их всегда переносили в закрытых упаковках, препятствовавших попаданию влаги.
Порох Вьеля был использован в винтовке Лебеля, которую сразу же приняла на вооружение французская армия, чтобы использовать все преимущества нового пороха над чёрным. Другие европейские страны поспешили последовать примеру французов и тоже перешли на аналоги Poudre B. Первыми были Германия и последовавшая за ней Австрия, которые ввели новое вооружение в 1888 году.
Баллистит и кордит
Примерно в одно время с Вьелем в 1887 году в Великобритании Альфред Нобель разработал баллистит, один из первых нитроглицериновых бездымных порохов, состоящий из равных частей пороха и нитроглицерина, и получил на него британский патент.
Баллистит был модифицирован Фредериком Абелем и Джеймсом Дьюаром в новый состав, названный кордит. Он также состоит из нитроглицерина и пороха, но использует самую нитрированную разновидность пороха, нерастворимую в смесях эфира и спирта, в то время как Нобель использовал растворимые формы. Кордит стал основным видом бездымных взрывчатых веществ на вооружении британской армии в течение XX века.
Кордит стал предметом судебных исков между Нобелем и британским правительством в 1894 и 1895 гг. Нобель считал, что его патент на баллистит также включает и кордит, на практике невозможно приготовить одну из форм в чистом виде, без примеси второй. Суд вынес постановление не в пользу Нобеля.
В 1889 году британский патент на похожий состав также получил оружейник Хайрем Максим, а в 1890 году его брат Хадсон Максим запатентовал этот состав в США.
Эти новые взрывчатые вещества были более стабильными и более безопасными в обращении, чем белый порох, и, что немаловажно — более мощными.
23 января 1891 года Дмитрий Иванович Менделеев создал и дал название этому пороху «пироколлодийный» — по полученному и названному им же виду нитроклетчатки — «пироколлодий». Вид нитроцеллюлозного пороха, в состав которого входит хорошо растворимая нитроклетчатка и собственно растворитель, дополнительными компонентами являются различные присадки, предназначенные для стабилизации газообразования. Началось производство на Шлиссельбургском заводе под Санкт-Петербургом. Осенью 1892 года, с участием главного инспектора артиллерии морского флота адмирала С. О. Макарова, испытан пироколлодийный порох. За полтора года под руководством Д. И. Менделеева разработана технология пироколлодия — основы российского бездымного пороха. После испытаний 1893 адмирал С. О. Макаров подтвердил пригодность нового "бездымного зелья" для использования в орудиях всех калибров.[1]
В 1895—1896 годах «Морской сборник» печатает две большие статьи Д. И. Менделеева под общим заголовком «О пироколлодийном бездымном порохе», где особо рассматривается химизм технологии и приводится реакция получения пироколлодия. Характеризуется объём газов, выделяемых при его горении, последовательно и подробно рассматривается сырьё. Д. И. Менделеев, скрупулёзно сравнивая по 12 параметрам пироколлодийный — с другими порохами, демонстрирует его неоспоримые достоинства, прежде всего — стабильность состава, гомогенность, отсутствие «следов детонации».[2]
Желатиновый порох
Иван Платонович Граве — профессор Михайловской артиллерийской академии, полковник, — в 1916 году усовершенствовал французское изобретение: получил бездымный порох на другой основе — на нелетучем растворителе, — коллоидный, или желатиновый, порох. Он легко поддавался формовке и даже обработке на токарном станке. Применялся желатиновый порох в виде пороховых элементов с большой толщиной стенки (более нескольких миллиметров).
В 1926 году в СССР Граве получил патент на это изобретение. Главное артиллерийское управление (ГАУ) подтверждает его авторство в разработке пороха и снарядов для «Катюши»[3].
Применение
В наши дни пороха, основанные только на нитроцеллюлозе, известны как одноосновные, а кордитоподобные известны как двухосновные. Также были разработаны трёхосновные кордиты (Cordite N и NQ) с добавкой нитрогуанидина, изначально использовавшиеся в больших пушках морских боевых кораблей, но нашедшие своё применение и в танковых войсках, а ныне использующиеся и в полевой артиллерии. Основное преимущество трехосновных порохов, по сравнению с двухосновными, состоит в существенно более низкой температуре пороховых газов при аналогичной эффективности. Перспективы дальнейшего использования порохов, содержащих нитрогуанидин, связаны с авиационными и зенитными орудиями малого калибра, имеющими высокий темп стрельбы.
Бездымный порох позволил произвести на свет современное полуавтоматическое и автоматическое оружие. Чёрный порох оставлял большое количество твердых продуктов (40-50% от массы пороха) в стволах орудий. Основные твердые продукты сгорания дымного пороха, полисульфиды (K2Sn, где n=2-6) и сульфид калия (K2S), притягивают влагу и гидролизуются до калийной щелочи и сероводорода. При сгорании бездымных порохов образуется не более 0,1 - 0,5% твердых продуктов, что позволило осуществлять автоматическую перезарядку оружия с использованием множества подвижных частей. Стоит учесть, что продукты сгорания всех бездымных порохов содержат много оксидов азота, что повышает их корродирующее действие на металл оружия.
Одно- и двухосновные бездымные пороха в наше время составляют основную часть метательных взрывчатых веществ, использующихся в стрелковом оружии. Они настолько распространены, что большинство случаев использования слова «порох» относится именно к бездымному пороху, в частности, когда речь идёт о ручном огнестрельном оружии и артиллерии. Дымные пороха используются в качестве МВВ только в подствольных гранатометах, сигнальных ракетницах и некоторых патронах для гладкоствольного оружия.
В некоторых случаях, например, в ряде кустарных ручных гранат и импровизированных артиллерийских снарядов, бездымный порох может использоваться и в качестве бризантного взрывчатого вещества, для чего плотность заряжания доводят до величины, соответствующей детонации, и используют мощные детонаторы. В отличие от многих взрывчатых веществ, для использования бездымного пороха не обязателен капсюль-детонатор, вполне достаточно любого воспламенителя. Эффективность использования бездымных порохов в качестве БВВ, в случае воспламенения, сравнима с эффективностью использования минного дымного пороха. При использовании мощных детонаторов (на практике не менее 400-600 гр. ТНТ) эффективность находится на уровне большинства индивидуальных БВВ.
Нестабильность и стабилизация
Нитроцеллюлоза со временем разлагается с выделением оксидов азота, которые катализируют дальнейший распад компонентов пороха. В процессе реакций разложения выделяется теплота, которой, в случае длительного хранения большого количества пороха или хранения пороха при высоких температурах (на практике, выше 25°С), может быть достаточно для самовоспламенения.
Одноосновные нитроцеллюлозные пороха наиболее подвержены разложению; двухосновные и трёхосновные разлагаются более медленно, что связано с более высоким содержанием стабилизаторов химической стойкости и их более равномерным распределением в объёме пороха, так как нитроглицерин и другие пластификаторы способствуют переводу нитроцеллюлозы в состояние однородного пластика. Кислотные продукты химического распада (главным образом, оксиды азота, азотистая и азотная кислоты) энергонасыщенных компонентов пороха могут вызвать коррозию металлов гильзы, пули и капсюля снаряженных боеприпасов или металлов упаковки пороха при отдельном хранении последнего.
Чтобы избежать накопления в составе пороха кислотных продуктов распада, добавляют стабилизаторы, самыми популярными из которых являются дифениламин и центролиты (№1 и №2). Также применяют 4-нитродифениламин, N-нитрозодифениламин и N-метил-п-нитроанилин. Стабилизаторы добавляются в количествах порядка 0,5-2 % от общей массы состава; большие же количества могут несколько ухудшить баллистические характеристики пороха за счет смещения кислородного баланса. Количество стабилизатора со временем уменьшается за счет расходования на реакции с кислотными продуктами разложения пороха, что может привести к самовозгоранию, поэтому взрывчатые вещества должны периодически тестироваться на количество стабилизаторов. Повышение содержания стабилизаторов химической стойкости способствует увеличению продолжительности хранения любых метательных ВВ, но снижает баллистические качества порохового заряда.
Бездымные взрывчатые компоненты
В состав разных сортов пороха могут входить различные активные и вспомогательные компоненты:
- Взрывчатые вещества:
- Нитроцеллюлоза, активный компонент большинства бездымных порохов
- Нитроглицерин, активный компонент двухосновных и трёхосновных составов
- Нитрогуанидин, компонент трёхосновных составов
- Ацетилцеллюлоза, добавляется для увеличения дульной энергии и скорости пули
- Гексоген, добавка к пушечному пороху
- Мягчители, делающие гранулы менее хрупкими
- Дибутилфталат
- Polyester adipate (Полиэфирный адипат?
Да)
- Динитротолуол (токсичен, канцероген, устаревший)
- Вяжущие вещества, поддерживающие форму гранул
- Стабилизаторы, предотвращают или тормозят самораспад
- Размеднители — добавки, препятствующие накоплению остатков меди (из капсюлей) на внутренней поверхности ствола оружия
- Олово и его соединения, например, оксид олова
- Висмут и его соединения, например, оксид висмута, карбонат висмутила, нитрат висмута, антимонид висмута; предпочитают соединения висмута, так как медь растворяется в расплавленном висмуте, образуя хрупкий и легко удаляемый сплав
- Свинец — металлический (в виде фольги) и его соединения. Не используются из-за токсичности
- Пламегасящие добавки — для того, чтобы уменьшить яркость свечения вырывающихся из ствола при выстреле продуктов сгорания, и тем самым уменьшить демаскировку стрелка, а также его ослепление (особенно при стрельбе в ночное время)
- Нитрат калия
- Сульфат калия (оба обладают недостатком — увеличивают количество выделяемого дыма)
- Хлорид калия
- Добавки, уменьшающие износ ствола USA 16"/50 (40.6 cm) Mark 7
- Воск
- Тальк
- Оксид титана(IV)
- Полиуретановые пакеты на пороховых порциях в больших орудиях
- Катализаторы — добавки, ускоряющие реакцию горения
- Нитраты диэтиленгликоля (используется в большинстве случаев динитрат диэтиленгликоля)
- Нитроксиэтилнитрамины
- Другие добавки
- Графит — противослёживающая и антистатическая смазка (покрывает гранулы с целью предотвратить их слипание и самовозгорание от искр статического электричества)
- Карбонат кальция — антикоррозионная добавка, нейтрализующая кислотные продукты распада
Свойства пороха сильно зависят от размера и формы его гранул. Поверхность гранул влияет на изменение их формы и скорость сгорания. Варьируя форму гранул можно повлиять на давление и кривую процесса сгорания пороха по времени.
Составы, сгорающие быстрее, дают большее давление при более высокой температуре, но также увеличивают износ стволов орудий.
Порох Primex содержит 0—40 % нитроглицерина, 0—10 % дибутилфталата, 0—10 % polyester adipate, 0—5 % канифоли, 0—5 % этилацетата, 0,3—1,5 % дифениламина, 0—1,5 % N-нитрозодифениламина, 0—1,5 % 2-нитрофениламина, 0—1,5 % нитрата калия, 0—1,5 % сульфата калия, 0—1,5 % оксида олова, 0,02—1 % графита, 0—1 % карбоната кальция, и остаток от 100 % — нитроцеллюлозы. USA smokeless powder manufacturer’s Material Safety Data Sheet
См. также
Примечания
- ↑ Летопись жизни и деятельности Д. И. Менделеева. Л.: Наука. 1984. С. 313
- ↑ Менделеев Дмитрий Иванович. Менделеев, Д. И. Сочинения: в 25 т. / Ответственный редактор акад. В. Г. Хлопин; Кураторы тома: проф. С. П. Вуколов и засл. деят. науки Л. И. Багал. — Л.—М.. — Академия Наук СССР. — Ленинград—Москва: Академия Наук СССР, 1949. — С. 181-253. — 314 с.
- ↑ Один из создателей «Катюши» Архивная копия от 24 октября 2015 на Wayback Machine.