![<span class="mw-page-title-main">Теория множеств</span> раздел математики](https://upload.wikimedia.org/wikipedia/commons/thumb/8/83/3D_Cantor_set.jpg/320px-3D_Cantor_set.jpg)
Тео́рия мно́жеств — раздел математики, в котором изучаются общие свойства множеств — совокупностей элементов произвольной природы, обладающих каким-либо общим свойством. Создана во второй половине XIX века Георгом Кантором при значительном участии Рихарда Дедекинда, привнесла в математику новое понимание природы бесконечности, была обнаружена глубокая связь теории с формальной логикой, однако уже в конце XIX — начале XX века теория столкнулась со значительными сложностями в виде возникающих парадоксов, поэтому изначальная форма теории известна как наивная теория множеств. В XX веке теория получила существенное методологическое развитие, были созданы несколько вариантов аксиоматической теории множеств, обеспечивающие универсальный математический инструментарий, в связи с вопросами измеримости множеств тщательно разработана дескриптивная теория множеств.
Конти́нуум в теории множеств — мощность множества всех вещественных чисел. Обозначается строчной латинской буквой c во фрактурном начертании:
. Множество, имеющее мощность континуум, называется континуа́льным множеством.
![<span class="mw-page-title-main">Векторное пространство</span> основное понятие линейной алгебры, пространство над полем](https://upload.wikimedia.org/wikipedia/commons/thumb/3/33/Vector-space-illust-transparent-background.png/320px-Vector-space-illust-transparent-background.png)
Ве́кторное простра́нство — математическая структура, представляющая собой набор элементов, называемых векторами, для которых определены операции сложения друг с другом и умножения на число — скаляр. Эти операции подчинены восьми аксиомам. Скаляры могут быть элементами вещественного, комплексного или любого другого поля чисел. Частным случаем подобного пространства является обычное трёхмерное евклидово пространство, векторы которого используются, к примеру, для представления физических сил. При этом вектор как элемент векторного пространства не обязательно должен быть задан в виде направленного отрезка. Обобщение понятия «вектор» до элемента векторного пространства любой природы не только не вызывает смешения терминов, но и позволяет уяснить или даже предвидеть ряд результатов, справедливых для пространств произвольной природы.
Мо́щность, или кардина́льное число́, мно́жества — характеристика множеств, обобщающая понятие количества (числа) элементов конечного множества.
Бесконе́чное мно́жество — множество, не являющееся конечным. Можно дать ещё несколько эквивалентных определений бесконечного множества:
- Множество, в котором для любого натурального числа
найдётся конечное подмножество из
элементов. - Множество, в котором найдётся счётное подмножество.
- Множество, в котором найдётся подмножество, равномощное некоторому (ненулевому) предельному ординалу.
- Множество, для которого существует биекция с некоторым его собственным подмножеством.
Несчётное мно́жество — бесконечное множество, не являющееся счётным.
Конти́нуум-гипо́теза — выдвинутое в 1877 году Георгом Кантором предположение о том, что любое бесконечное подмножество континуума является либо счётным, либо континуальным. Другими словами, гипотеза предполагает, что мощность континуума — наименьшая, превосходящая мощность счётного множества, и «промежуточных» мощностей между счетным множеством и континуумом нет. В частности, это предположение означает, что для любого бесконечного множества действительных чисел всегда можно установить взаимно-однозначное соответствие либо между элементами этого множества и множеством целых чисел, либо между элементами этого множества и множеством всех действительных чисел.
![<span class="mw-page-title-main">Бесконечность</span> концепция, используемая в математике, философии и естественных науках](https://upload.wikimedia.org/wikipedia/commons/thumb/6/6c/David_Gerstein_-_Infinity_Rally.jpg/320px-David_Gerstein_-_Infinity_Rally.jpg)
Бесконе́чность — категория человеческого мышления, используемая для характеристики безграничных, беспредельных, неисчерпаемых предметов и явлений, для которых невозможно указание границ или количественной меры. Используется в противоположность конечному, исчисляемому, имеющему предел. Систематически исследуется в математике, логике и философии, также изучаются вопросы о восприятии, статусе и природе бесконечности в психологии, теологии, физике соответственно. Бесконечность обозначается символом
.
Краевая задача — задача о нахождении решения заданного дифференциального уравнения, удовлетворяющего краевым (граничным) условиям в концах интервала или на границе области. Краевые задачи для гиперболических и параболических уравнений часто называют начально-краевыми или смешанными, потому что в них задаются не только граничные, но и начальные условия.
![<span class="mw-page-title-main">Алеф (буква еврейского алфавита)</span> первая буква еврейского алфавита, символ в математике.](https://upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Hebrew_letter_Alef.svg/langru-320px-Hebrew_letter_Alef.svg.png)
А́леф — первая буква еврейского алфавита.
Хара́ктер — мультипликативная комплекснозначная функция на группе. Иначе говоря, если
— группа, то характер — это гомоморфизм из
в мультипликативную группу поля.
![<span class="mw-page-title-main">Порядковое число</span> порядковый тип вполне упорядоченного множества](https://upload.wikimedia.org/wikipedia/commons/thumb/e/e6/Omega-exp-omega-labeled.svg/langru-320px-Omega-exp-omega-labeled.svg.png)
В теории множеств порядковым числом, или ординалом называется порядковый тип вполне упорядоченного множества. Как правило, порядковые числа отождествляются с наследственно транзитивными множествами. Ординалы представляют собой одно из расширений натуральных чисел, отличающееся как от целых, так и от кардинальных чисел. Как и другие разновидности чисел, их можно складывать, перемножать и возводить в степень. Бесконечные порядковые числа называют трансфинитными. Ординалы играют ключевую роль в доказательстве многих теорем теории множеств — в частности, благодаря связанному с ними принципу трансфинитной индукции.
![<span class="mw-page-title-main">Бет (буква еврейского алфавита)</span> вторая буква еврейского алфавита](https://upload.wikimedia.org/wikipedia/commons/thumb/1/1a/Hebrew_letter_bet.svg/langru-320px-Hebrew_letter_bet.svg.png)
Бет — вторая буква еврейского алфавита. Имеет числовое значение (гематрию) 2.
![<span class="mw-page-title-main">Символ бесконечности</span> математический символ, представляющий концепцию бесконечности](https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Infinity_symbol.svg/langru-320px-Infinity_symbol.svg.png)
Символ бесконечности — математический символ, представляющий концепцию бесконечности.
Универсум фон Неймана — класс, образованный наследственными фундированными множествами; такая совокупность, формализуемая теорией множеств Цермело — Френкеля (ZFC), часто используется в качестве интерпретации или обоснования ZFC-аксиом. Стандартное обозначение —
.
![<span class="mw-page-title-main">Иерархия алефов</span> теория множеств](https://upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Aleph0.svg/langru-320px-Aleph0.svg.png)
Иера́рхия а́лефов в теории множеств и в математике вообще представляет собой упорядоченную систему обобщённых («кардинальных») чисел, используемых для представления мощности бесконечных вполне упорядоченных множеств. Мощность конечного множества есть количество его элементов, поэтому иерархия кардинальных чисел включает обычные натуральные числа, упорядоченные традиционным способом. Далее в иерархии идут бесконечные вполне упорядоченные множества, мощность которых обозначается с помощью буквы алеф (ℵ) еврейского алфавита с индексами, причём индекс сам может быть бесконечным порядковым числом. Множествам большей мощности соответствует большее значение индекса.
Конструктивным универсумом в теории множеств называется класс множеств, обозначаемый L и состоящий, неформально говоря, из множеств, которые можно определить с помощью формул в терминах более простых множеств. Все множества класса L образуют конструктивную иерархию, уровни которой индексируются ординалами. Данные термины были впервые введены Куртом Гёделем в 1938 году в работе "Непротиворечивость аксиомы выбора и обобщённой континуум-гипотезы". В этой работе было доказано, что конструктивный универсум является внутренней моделью теории множеств ZF, а также что аксиома выбора и обобщённая континуум-гипотеза истинны в этой модели, то есть они не противоречат другим аксиомам ZF. Это было важным результатом, поскольку доказательство многих других теорем опирается на предположение об истинности аксиомы выбора или континуум-гипотезы.
Оценки Шаудера — оценки на норму Гёльдера решений линейных равномерно эллиптических уравнений в частных производных.
В теории чисел теорема Виноградова является результатом, из которого следует, что любое достаточно большое нечётное целое число может быть записано как сумма трёх простых чисел. Это более слабая форма слабой гипотезы Гольдбаха, которая подразумевает существование такого представления для всех нечётных целых чисел, превышающих пять.