Бикубическая интерполяция часто используется в обработке изображений, давая более качественную картинку по сравнению с билинейной интерполяцией. Также бикубическая интерполяция применяется в алгоритмах управления станков с ЧПУ для учёта неровностей плоскостей, например, при фрезеровке печатных плат.
В случае бикубической интерполяции значение функции в искомой точке вычисляется через её значения в 16 соседних точках, расположенных в вершинах квадратов плоскости .
При использовании приведённых ниже формул для программной реализации бикубической интерполяции следует помнить, что значения и являются относительными, а не абсолютными. Например, для точки с координатами . Для получения относительных значений координат необходимо округлить вещественные координаты вниз и вычесть полученные числа из вещественных координат.
,
где
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
Подобным образом можно использовать и интерполяции более высокого порядка, вычисляя значения функции по соседним точкам.
Бикубическая интерполяция сплайнами
Допустим, что необходимо интерполировать значение функции в точке , лежащей внутри квадрата , и известно значение функции в шестнадцати соседних точках .
Тогда общий вид функции, задающей интерполированную поверхность, может быть записан следующим образом:
.
Для нахождения коэффициентов необходимо подставить в вышеприведённое уравнение значения функции в известных шестнадцати точках. Например:
Единожды найденные коэффициенты теперь могут быть использованы для многократного вычисления интерполированного значения функции в произвольных точках квадрата .
Следует отметить, что такой способ обеспечивает непрерывность самой функции и её второй производной на границах смежных квадратов, но приводит к разрыву первых производных на границах ячеек 4×4. Для обеспечения непрерывности самой функции и её первой производной необходимо подставлять в исходное выражение значения функции и значения первых производных по направлениям x и y в вершинах центральной ячейки, производные рассчитываются через центральные разности. Для подстановки производных выражение должно быть продифференцировано соответствующим образом.
Последовательная кубическая интерполяция
Другая интерпретация метода заключается в том, что для нахождения интерполированного значения можно сначала произвести кубическую интерполяцию в одном направлении, а затем в другом.
Для функции с известными значениями , , , можно построить кубический сплайн: , или в матричном виде:
,
где
,
.
Таким образом, для нахождения интерполированного значения в квадрате можно сначала рассчитать четыре значения , , , для зафиксированного , затем через полученные четыре точки построить кубический сплайн, и этим завершить вычисление :
.
Следует отметить, что такой подход обеспечивает непрерывность самой функции и её вторых производных на границе ячеек, но не обеспечивает непрерывности первой производной. Для обеспечения непрерывности первой производной необходимо подставлять значения функции и её первых производных на границе центральной ячейки. Тогда коэффициенты сплайна будут иметь вид:
Тео́рия упру́гости — раздел механики сплошных сред, изучающий деформации упругих твёрдых тел, их поведение при статических и динамических нагрузках.
Лемниска́та Берну́лли — плоская алгебраическая кривая. Определяется как геометрическое место точек, произведение расстояний от которых до двух заданных точек (фокусов) постоянно и равно квадрату половины расстояния между фокусами.
Э́ллипс — замкнутая плоская кривая, исторически определённая как одно из конических сечений . Название эллипсу дал Аполлоний Пергский в своей «Конике».
Гипе́рбола — геометрическое место точек M евклидовой плоскости, для которых абсолютное значение разности расстояний от M до двух выделенных точек и постоянно. Точнее,
причём
Юлиа́нская да́та (JD) — астрономический способ измерения времени, при котором считается число суток, прошедших начиная с полудня понедельника, 1 января 4713 года до н. э. пролептического юлианского календаря или, что то же самое, 24 ноября 4714 года до н. э. пролептического григорианского календаря. Первый день имел номер 0. С тех пор по настоящее время прошло немногим менее 2,5 миллиона дней. Даты сменяются в полдень UT или TT. Для точного обозначения времени применяют дробную часть, например, JD = 2451545,25 соответствует 18 часам 1 января 2000 года; 3 часа дня 2 августа 1942 года — JD 2430574,125; 13,5 июня 1944 года — JD 2431255,0.
Магнитосопротивление — изменение электрического сопротивления материала в магнитном поле. Впервые эффект был обнаружен в 1856 Уильямом Томсоном. В общем случае можно говорить о любом изменении тока через образец при том же приложенном напряжении и изменении магнитного поля. Все вещества в той или иной мере обладают магнитосопротивлением. Для сверхпроводников, способных без сопротивления проводить электрический ток, существует критическое магнитное поле, которое разрушает этот эффект и вещество переходит в нормальное состояние, в котором наблюдается сопротивление. В нормальных металлах эффект магнитосопротивления выражен слабее. В полупроводниках относительное изменение сопротивления может быть в 100—10 000 раз больше, чем в металлах.
Кривая второго порядка — геометрическое место точек плоскости, прямоугольные координаты которых удовлетворяют уравнению вида
В алгебре корень Бринга или ультрарадикал — это аналитическая функция , задающая единственный действительный корень многочлена . Иначе говоря, для любого верно, что
Квазичастицы в графене обладают линейным законом дисперсии вблизи дираковских точек и их свойства полностью описываются уравнением Дирака. Сами дираковские точки находятся на краях зоны Бриллюэна, где электроны обладают большим волновым вектором. Если пренебречь процессами переброса между долинами, то этот большой вектор никак не влияет на транспорт в низкоэнергетическом приближении, поэтому волновой вектор, фигурирующий в уравнении Дирака, отсчитывают от дираковских точек и уравнение Дирака записывают для разных долин отдельно.
Те́нзор напряже́ний — тензор второго ранга, описывающий механические напряжения в произвольной точке нагруженного тела, возникающих в этой точке при его (тела) малых деформациях. В случае объёмного тела, тензор часто записывается в виде матрицы 3×3:
а в случае двумерного тела матрицей 2×2:
Фу́нкция Э́йри — частное решение дифференциального уравнения
Ло́ренц-ковариа́нтность — свойство систем математических уравнений, описывающих физические законы, сохранять свой вид при применении преобразований Лоренца. Более точно, всякий физический закон должен представляться релятивистски инвариантной системой уравнений, то есть инвариантной относительно полной ортохронной неоднородной группы Лоренца. Принято считать, что этим свойством должны обладать все физические законы, и экспериментальных отклонений от него не обнаружено.
Схема интерполяционных полиномов Лагранжа — схема разделения секрета, широко используемая в криптографии. Схема Шамира позволяет реализовать — пороговое разделение секретного сообщения (секрета) между сторонами так, чтобы только любые и более сторон могли восстановить секрет. При этом любые и менее сторон не смогут восстановить секрет.
Спектральное разложение матрицы или разложение матрицы на основе собственных векторов — это представление квадратной матрицы в виде произведения трёх матриц , где — матрица, столбцы которой являются собственными векторами матрицы , — диагональная матрица с соответствующими собственными значениями на главной диагонали, — матрица, обратная матрице .
В математике, особенно в теории матриц и комбинаторике, ма́трица Паска́ля — это бесконечная матрица, элементами которой являются биномиальные коэффициенты. Существует три варианта расположения элементов в матрице: в виде верхнетреугольной, нижнетреугольной или симметричной матрицы. 5×5-ограничения таких матриц имеют вид:
Квадратный корень из матрицы — расширение понятия числового квадратного корня на кольцо квадратных матриц.
Исаак Ньютон получил две классификации кубик . Основываясь на второй классификации была получена аффинная классификация кубик. Эта классификация описана в следующей теореме.
Изгиб пластин в теории упругости относится к расчёту деформаций в пластинах, под действием перпендикулярных к плоскости пластины внешних сил и моментов. Величину отклонения можно определить, решив дифференциальные уравнения соответствующей теории пластин в зависимости от допущений на малость тех или иных параметров. По этим прогибам можно рассчитать напряжения в пластине. При известных напряжениях можно использовать теорию разрушения, чтобы определить, нарушение целостности плиты при данной нагрузке. Деформация пластины является функцией двух координат, поэтому теория пластин формулируется в общем случае в терминах дифференциальных уравнений в двумерном пространстве. Также считается, что пластина изначально имеет плоскую форму.
Алгоритм F5 вычисления базиса Грёбнера был предложен Ж.-Ш. Фожером в 2002 году. В данной работе рассмотрим его матричную версию, работающую для однородных многочленов. Основная процедура этого алгоритма вычисляет d-базис Грёбнера, то есть, подмножество базиса Грёбнера, относительно которого редуцируются к нулю все многочлены из идеала степени не выше, чем d.
Алгоритм Тоома — Кука, иногда упоминаемый как Tоом-3 — это алгоритм умножения больших чисел, названный именами Андрея Леоновича Тоома, предложившего новый алгоритм с низкой сложностью и Стивена Кука, более ясно его описавшего.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.