Биологические моторы

Перейти к навигацииПерейти к поиску

Биологические моторы (англ. biological motors) — моторные белки и белковые комплексы, генерирующие механическое усилие для осуществления движения клеток, внутриклеточного транспорта и других биологических процессов.

Описание

К биологическим моторам относят моторные белки, например, миозины, кинезины и динеины, обеспечивающие сокращение мышц, движение немышечных клеток, деление клеток, эндоцитоз, экзоцитоз, а также процессы внутриклеточного транспорта органелл и макромолекул. Перечисленные моторные белки принадлежат к так называемым линейным моторам, которые выполняют механическую работу, перемещаясь в одном направлении вдоль компонентов цитоскелетамикрофиламентов (миозины) или микротрубочек (кинезины и динеины).

В качестве топлива они используют аденозинтрифосфат (АТФ) — универсальный энергетический субстрат клетки. Обычно моторные белки, осуществляющие движение либо в прямом, либо в обратном направлениях, развивают при этом различное усилие. Все моторные белки регулируются клеточными системами, осуществляющими их активацию, торможение и взаимодействие с перевозимыми грузами.

У бактерий существует ротационный мотор, напоминающий по своему устройству электродвигатель, так называемый жгутиковый моторный комплекс. Он используется для вращения жгутиков и перемещения клеток в водной среде. Еще один белковый комплекс, совершающий вращательные движения, так называемый АТФ-синтаза, есть у всех живых организмов. В клетках животных и растений он встроен во внутреннюю мембрану митохондрий — энергетических станций клеток. Он использует электрохимический градиент протонов на митохондриальной мембране для синтеза АТФ. Этот мотор может работать и в обратном направлении — расщеплять АТФ и за счет полученной энергии создавать градиент протонов на мембране митохондрий.

Специальные моторные белки развивают значительное механическое усилие и совершают перемещения при работе с молекулами ДНК. К ним относятся ДНК-полимеразы и РНК-полимеразы, синтезирующие нуклеиновые кислоты на матрице ДНК; топоизомераза, расплетающая нити двухцепочечной ДНК; белковые и РНК-белковые комплексы для упаковки вирусного генома в капсид.

В таблице приведены механические параметры некоторых представителей биологических моторов:

МоторСила, пНШаг, нмСкорость, нм/сЭффективность, % (отн. F1-АТФазы)
РНК-полимераза14—250,343,4—179—15
ДНК-полимераза340,3434—34023
ДНК-упаковывающий мотор бактериофага Phi295733
Кинезин68800—300040—60
Миозин3—55—15300012—42
F1-АТФаза40 пН/нм120°4 об/с100

Биологические моторы имеют наноразмеры и при этом зачастую более высокую эффективность по сравнению с макромоторами, созданными человеком. Они экологически безопасны и биосовместимы. Поскольку биологические моторы — это белковые молекулы, кодируемые соответствующими генами, возможно их конструирование с заданными свойствами с помощью генной инженерии. Привлекательность биомолекулярных моторов для нанотехнологий состоит и в том, что сегодня это практически единственные реально существующие наномоторы (разработка искусственных наномоторов находится на самых ранних стадиях).

Недостатком биологических моторов являются специальные условия работы: жидкая среда определенного солевого состава, температуры и pH. Это ограничивает область их применения. Однако эти требования не являются лимитирующими для применения биологических моторов в наномедицине, например, при создании диагностических лабораторий на чипе, систем доставки генов и лекарств, бионаноэлектромеханических систем (биоНЭМС) и др.

Литература

  •  (англ.) Molecular Motors / Ed. by Schliwa, Manfred. — Weinheim: Wiley—VCH, 2002. — 582 p.

Ссылки