Биоло́гия — наука о живых существах и их взаимодействии со средой обитания. Изучает все аспекты жизни, в частности: структуру, функционирование, рост, происхождение, эволюцию и распределение живых организмов на Земле. Классифицирует и описывает живые существа, происхождение их видов, взаимодействие между собой и с окружающей средой.
Пи́ща (еда́) — то, что едят, чем питаются — любое вещество, пригодное для еды и питья живым организмам для пополнения запасов энергии и необходимых ингредиентов для нормального течения химических реакций обмена веществ: белков, жиров, углеводов, витаминов, минералов и микроэлементов. Питательные вещества попадают в живой организм, где усваиваются клетками с целью выработки и накопления энергии, поддержания жизнедеятельности, а также обеспечения ростовых процессов и созревания. Основное назначение пищи — быть источником энергии, возобновляемых материалов и «строительного материала» для организма, однако, немаловажным в питании человека является и фактор получения удовольствия от еды. Обычно пища делится по происхождению на растительную и животную.
Метаболи́зм, или обме́н веще́ств, — это химические реакции, поддерживающие жизнь в живом организме. Эти процессы позволяют организмам расти и размножаться, сохранять свои структуры и отвечать на воздействия окружающей среды.
Ферме́нты, или энзи́мы , — обычно сложные белковые соединения, РНК (рибозимы) или их комплексы, ускоряющие химические реакции в живых системах. Каждый фермент, свернутый в определённую структуру, ускоряет соответствующую химическую реакцию: реагенты в такой реакции называются субстратами, а получающиеся вещества — продуктами. Ферменты специфичны к субстратам: АТФ-аза катализирует расщепление только АТФ, а киназа фосфорилазы фосфорилирует только фосфорилазу.
Гормо́ны — биологически активные вещества органической природы, вырабатывающиеся в специализированных клетках желёз внутренней секреции, поступающие в кровь, связывающиеся с рецепторами клеток-мишеней и оказывающие регулирующее влияние на обмен веществ и физиологические функции. Гормоны служат гуморальными регуляторами определённых процессов в различных органах. Существуют и другие определения, согласно которым трактовка понятия «гормон» более широка: «сигнальные химические вещества, вырабатываемые клетками тела и влияющие на клетки других частей тела». Это определение представляется предпочтительным, так как охватывает многие традиционно причисляемые к гормонам вещества: гормоны животных, лишённых кровеносной системы, гормоны позвоночных, которые вырабатываются не в эндокринных железах, а также гормоны растений.
Катаболи́зм, также энергетический обмен, или диссимиляция — процесс метаболического распада (деградации) сложных веществ на более простые или окисления какого-либо вещества, обычно протекающий с освобождением энергии в виде тепла и в виде молекулы АТФ, универсального источника энергии всех биохимических процессов. Катаболические реакции лежат в основе диссимиляции: утраты сложными веществами своей специфичности для данного организма в результате распада до простых.
Белки́ — высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединённых в цепочку пептидной связью. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций определяет большое разнообразие свойств молекул белков. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул разных белков образуют сложные комплексы, например фотосинтетический комплекс и другие комплексы.
Пепти́ды — семейство веществ, молекулы которых построены из двух и более остатков аминокислот, соединённых в цепь пептидными (амидными) связями −C(O)NH−. Обычно подразумеваются пептиды, состоящие из -аминокислот, однако термин не исключает пептидов, полученных из любых других аминокарбоновых кислот.
Химическая эволюция или пребиотическая эволюция — этап, предшествовавший появлению жизни, в ходе которого органические, пребиотические вещества возникли из неорганических молекул под влиянием внешних энергетических и селекционных факторов и в силу развертывания процессов самоорганизации, свойственных всем относительно сложным системам, которыми, бесспорно, являются все углеродосодержащие молекулы.
Поликонденсация — процесс синтеза полимеров из полифункциональных соединений, обычно сопровождающийся выделением низкомолекулярных побочных продуктов при взаимодействии функциональных групп.
Биосинтез белка — это многостадийный процесс синтеза и созревания белков, протекающий в живых организмах. В биосинтезе белка выделяют два основных этапа: синтез полипептидной цепи из аминокислот, происходящий на рибосомах с участием молекул мРНК и тРНК (трансляция), и посттрансляционные модификации полипептидной цепи. Процесс биосинтеза белка требует значительных затрат энергии.
Мир РНК — гипотетический этап возникновения жизни на Земле, когда как функцию хранения генетической информации, так и катализ химических реакций выполняли ансамбли молекул рибонуклеиновых кислот. Впоследствии из их ассоциаций возникла современная ДНК-РНК-белковая жизнь, обособленная мембраной от внешней среды. Идея мира РНК была впервые высказана Карлом Вёзе в 1968 году, позже развита Лесли Орджелом и окончательно сформулирована Уолтером Гильбертом в 1986 году.
Возникнове́ние жи́зни, или абиогене́з , — процесс превращения неживой природы в живую. В узком смысле слова под абиогенезом также понимают образование органических соединений, распространённых в живой природе, вне организма без участия ферментов. Альтернативой зарождению жизни на Земле является панспермия, которая, однако, не решает принципиального вопроса о возникновении жизни, а лишь отдаляет его в ещё более далёкое прошлое Вселенной.
Регуляторная функция белков ― осуществление белками регуляции процессов в клетке или в организме, что связано с их способностью к приёму и передаче информации. Действие регуляторных белков обратимо и, как правило, требует присутствия лиганда. Постоянно открывают всё новые и новые регуляторные белки, в настоящее время известна, вероятно, только малая их часть.
Хи́мия приро́дных соедине́ний (ХПС) — раздел органической химии, изучающий химические соединения, входящие в состав живых организмов, природные пути их превращений и методы искусственного получения. Как наука, химия природных соединений возникла одновременно с органической химией. Необходимость выделить самостоятельную дисциплину, отделить её от классической органической химии, возникла после накопления большого количества данных, выделения и изучения структуры и свойств химических веществ, обнаруженных в живых организмах.
Кле́тка — структурно-функциональная элементарная единица строения и жизнедеятельности всех организмов, обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо состоят из множества клеток, либо являются одноклеточными организмами. Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии. Также принято говорить о биологии клетки, или клеточной биологии.
Пури́новый обме́н — совокупность протекающих в живых организмах процессов синтеза и распада пуринов и пуриновых нуклеотидов.
Ферментати́вная кине́тика — зависимость скорости химической реакции от её условий — раздел биохимии, предметом которого являются химические реакции, катализируемые ферментами, изучающий закономерности течения во времени и механизм ферментативных реакций. Ферментативная кинетика занимается исследованием закономерностей влияния химической природы реагентов, количественным изучением эффектов варьирования условий (кинетики) той или иной химической реакции, а также измеряет её скорость. Изучение ферментов позволяет выявить каталитический механизм действия определённого фермента и контролировать его роль в процессе обмена веществ, способного замедлять (ингибировать) или ускорять (активировать) ход химической реакции. Таким образом, кинетические исследования позволяют не только определить сродство и специфичность связывания субстратов и ингибиторов к ферментам, но и найти максимальную скорость процесса, катализируемого специфическим ферментом, а также попутно решить многие другие задачи и возникающие проблемы. При этом, основная часть проблем ферментативной кинетики сводится к:
- анализу предполагаемых схем ферментативных реакций,
- выводу уравнений скорости, соответствующих этим схемам,
- сопоставлению полученных зависимостей с данными эксперимента.