Термодина́мика — раздел физики, изучающий наиболее общие свойства макроскопических систем и способы передачи и превращения энергии в таких системах.
Свобо́дная эне́ргия Ги́ббса — это величина, изменение которой в ходе химической реакции равно изменению внутренней энергии системы. Энергия Гиббса показывает, какая часть от полной внутренней энергии системы может быть использована для химических превращений или получена в их результате в заданных условиях и позволяет установить принципиальную возможность протекания химической реакции в заданных условиях. Математически это термодинамический потенциал следующего вида:
Пла́зма — ионизированный газ, одно из четырёх классических агрегатных состояний вещества.
Хими́ческий потенциа́л — термодинамическая функция, применяемая при описании состояния систем с переменным числом частиц. Определяет изменение термодинамических потенциалов при изменении числа частиц в системе. Представляет собой энергию добавления одной частицы в систему без совершения работы. Применяется для описания материального взаимодействия.
Уравне́ния Ма́ксвелла — система уравнений в дифференциальной или интегральной форме, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца, задающим меру воздействия электромагнитного поля на заряженные частицы, эти уравнения образуют полную систему уравнений классической электродинамики, называемую иногда уравнениями Максвелла — Лоренца. Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее влияние не только на все области физики, непосредственно связанные с электромагнетизмом, но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму.
Статистическая сумма — важная величина в статистической физике, содержащая информацию о статистических свойствах системы в состоянии термодинамического равновесия. Она является функцией температуры и других параметров, таких как объём. Многие термодинамические величины системы, такие как энергия, свободная энергия, энтропия и давление, могут быть выражены через статистическую сумму и её производные.
Большой термодинамический потенциал — термодинамический потенциал, используемый для описания систем с переменным числом частиц. Был введён Гиббсом и обозначен им как , поэтому иногда также называется омега-потенциалом.
Статистика Фе́рми — Дира́ка — квантовая статистика, применяемая к системам тождественных фермионов. Определяет вероятность, с которой данный энергетический уровень системы, находящейся в термодинамическом равновесии, оказывается занятым фермионом.
Физи́ческая кине́тика — микроскопическая теория процессов в неравновесных средах. В кинетике методами квантовой или классической статистической физики изучают процессы переноса энергии, импульса, заряда и вещества в различных физических системах и влияние на них внешних полей. В отличие от термодинамики неравновесных процессов и электродинамики сплошных сред, кинетика исходит из представления о молекулярном строении рассматриваемых сред, что позволяет вычислить из первых принципов кинетические коэффициенты, диэлектрические и магнитные проницаемости и другие характеристики сплошных сред. Физическая кинетика включает в себя кинетическую теорию газов из нейтральных атомов или молекул, статистическую теорию неравновесных процессов в плазме, теорию явлений переноса в твёрдых телах и жидкостях, кинетику магнитных процессов и теорию кинетических явлений, связанных с прохождением быстрых частиц через вещество. К ней же относятся теория процессов переноса в квантовых жидкостях и сверхпроводниках и кинетика фазовых переходов.
Флуктуационно-диссипационная теорема — теорема статистической физики, связывающая флуктуации системы с её диссипативными свойствами. ФДТ выводится из предположения о том, что отклик системы на малое внешнее воздействие имеет ту же природу, что и отклик на спонтанные флуктуации.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Статистическая механика или статистическая термодинамика — механика больших ансамблей относительно простых систем, таких как атомы в кристалле, молекулы в газе, фотоны в лазерном пучке, звёзды в галактике, автомобили на шоссе. Статистическая механика использует статистические методы для определения свойств и поведения макроскопических физических систем, находящихся в термодинамическом равновесии, на основе их микроскопической структуры и законов движения, которые считаются заданными. Статистические методы были введены в этом контексте Максвеллом в серии из трех статей (1860—1879) и Больцманом в серии из четырёх статей (1870—1884), которые заложили основы кинетической теории газов. Классическая статистическая механика была основана Гиббсом (1902); а позднее описание микроскопических состояний на основе классической механики было исправлено и дополнено в соответствии с квантовой механикой. Термодинамика, кинетическая теория и статистическая механика — это дисциплины, связанные объектом исследования, но отличающиеся используемыми методами; часто они представлены вместе под общим названием статистической физики. Последовательное построение неравновесной статистической механики было выполнено Н. Н. Боголюбовым в 1946 году. При описании систем в рамках статистической механики используется понятие среднего по ансамблю. Основными уравнениями статистической механики являются уравнения Лиувилля и цепочка уравнений Боголюбова.
Квантовый газ — газ, состоящий из (квази)частиц, де-бройлевская длина волны которых намного превышает их радиус взаимодействия.
Работа образования капли — работа, необходимая для образования капли, т. е. зародыша стабильной фазы, в исходной метастабильной фазе.
Спонта́нное наруше́ние симме́три́и — способ нарушения симметрии физической системы, при котором исходное состояние и уравнения движения системы инвариантны относительно некоторых преобразований симметрии, но в процессе эволюции система переходит в состояние, для которого инвариантность относительно некоторых преобразований начальной симметрии нарушается. Спонтанное нарушение симметрии всегда связано с вырождением состояния с минимальной энергией, называемого вакуумом. Множество всех вакуумов имеет начальную симметрию, однако каждый вакуум в отдельности — нет. Например, шарик в жёлобе с двумя ямами скатывается из неустойчивого симметричного состояния в устойчивое состояние с минимальной энергией либо влево, либо вправо, разрушая при этом симметрию относительно изменения левого на правое.
Модель свободных электронов, также известна как модель Зоммерфельда или модель Друде-Зоммерфельда, — простая квантовая модель поведения валентных электронов в атоме металла, разработана Арнольдом Зоммерфельдом на основе классической модели Друде с учётом квантово-механической статистики Ферми — Дирака. Электроны металла рассматриваются в этой модели как Ферми-газ.
Теория Линдхард — метод расчета эффекта экранировки электрического поля электронами в твердом теле. Он базируется на квантовой механике в пpиближении случайных фаз.