Генна́дий Алекса́ндрович Сарданашви́ли — советский и российский физик-теоретик.
Классическая теория поля — физическая теория о взаимодействии полей и материи, не затрагивающая квантовых явлений. Обычно различают релятивистскую и нерелятивистскую теорию поля.
Калибровочная теория гравитации — это подход к объединению гравитации с другими фундаментальными взаимодействиями, успешно описываемыми в рамках калибровочной теории.
Гладкое расслоение — локально тривиальное расслоение с гладкими функциями перехода.
Фёдор Алексеевич Богомолов — советский и американский математик, известный своими работами по алгебраической геометрии и теории чисел.
Метод квантования Бекки — Руэ́ — Стора́ — Тютина (BRST-квантование) — метод теоретической физики, использующий строгий подход к квантованию теории поля при наличии калибровочной симметрии. Назван по именам Карло Бекки, Алена Руэ, Реймона Стора и Игоря Тютина.
В математике любая лагранжева система допускает калибровочные симметрии, возможно, тривиальные. В теоретической физике понятие калибровочной симметрии, зависящей от параметров, являющихся функциями координат, является краеугольным камнем современной теории поля.
В применении к классической теории поля известная симплектическая гамильтонова теория принимает форму повременного гамильтонова формализма на бесконечномерном фазовом пространстве, где каноническими переменными являются полевые функции в каждый отдельный момент времени. Такой гамильтонов формализм используется в квантовой теории поля и, в частности, при квантовании калибровочных полей, но он не описывает классические поля подобно лагранжеву формализму.
В математике суперинтегрируемая гамильтонова система — это гамильтонова система на -мерном симплектическом многообразии , для которой выполняются следующие условия:
Градуированные многообразия представляют собой расширение концепции многообразия на основе представлений о суперсимметрии и коммутативной градуированной алгебры. Градуированные многообразия не являются супермногообразиями, хотя есть определенное соответствие между градуированными многообразиями и супермногообразиями Девитта. Как градуированные многообразия, так и супермногообразия определяются в терминах пучков -градуированных алгебр. Однако градуированные многообразия характеризуются пучками на гладких многообразиях, тогда как супермногообразия определяются склеиванием пучков супервекторных пространств.
Супергеометрия — это дифференциальная геометрия модулей над -градуированными алгебрами, на супермногообразиях и градуированных многообразиях. Супергеометрия является неотъемлемой частью многих классических и квантовых полевых моделей с участием нечетных полей, например, суперсимметричной теории поля, БРСТ теории, супергравитации.
Гомологическая зеркальная симметрия — математическая гипотеза, высказанная Максимом Концевичем. Она возникла как попытка выявить математическую природу явления, впервые замеченного физиками в теории струн.
С расслоением, слои которого являются гладкими многообразиями, можно связать некоторое расслоение с плоской связностью, называемой свя́зностью Га́усса — Ма́нина.
K-теория — математическая теория, изучающая кольца, порождённые векторными расслоениями над топологическими пространствами или схемами. В алгебраической топологии эта обобщённая теория когомологий называется топологической K-теорией. В алгебре и алгебраической геометрии соответствующий раздел называется алгебраической K-теорией. Также она играет важную роль в операторных алгебрах и её можно рассматривать как теорию определенных видов инвариантов больших матриц.
Александр Михайлович Виноградов — русский и итальянский математик, работавший в области дифференциального исчисления над коммутативными алгебрами, алгебраической теории линейных дифференциальных операторов, гомологической алгебры, дифференциальной геометрии и алгебраической топологии, механики и математической физики, геометрической теории нелинейных дифференциальный уравнений и вторичного дифференциального исчисления.
Некоммутативная геометрия (НКГ) — раздел математики, посвященный геометрическому подходу к некоммутативным алгебрам и построению «пространств», которые локально представлены некоммутативными алгебрами функций.