Изоморфи́зм — соотношение между математическими объектами, выражающее общность их строения; используется в разных разделах математики и в каждом из них определяется в зависимости от структурных свойств изучаемых объектов. Обычно изоморфизм определяется для множеств, наделённых некоторой структурой, например, для групп, колец, линейных пространств; в этом случае он определяется как обратимое отображение (биекция) между двумя множествами со структурой, сохраняющее эту структуру, то есть показывающее, что объекты «одинаково устроены» в смысле этой структуры. Если между объектами существует изоморфизм, то они называются изоморфными. Изоморфизм всегда задаёт отношение эквивалентности на классе таких структур.
Граф — математическая абстракция реальной системы любой природы, объекты которой обладают парными связями. Граф как математический объект есть совокупность двух множеств — множества самих объектов, называемого множеством вершин, и множества их парных связей, называемого множеством рёбер. Элемент множества рёбер есть пара элементов множества вершин.
Тео́рия гра́фов — раздел дискретной математики, изучающий графы, одна из ветвей топологии. В самом общем смысле граф — это множество точек, которые соединяются множеством линий. Теория графов включена в учебные программы для начинающих математиков, поскольку:
- как и геометрия, обладает наглядностью;
- как и теория чисел, проста в объяснении и имеет сложные нерешённые задачи;
- не имеет громоздкого математического аппарата ;
- имеет выраженный прикладной характер.
Ориентированный граф — (мульти) граф, рёбрам которого присвоено направление. Направленные рёбра именуются также дугами, а в некоторых источниках и просто рёбрами. Граф, ни одному ребру которого не присвоено направление, называется неориентированным графом или неорграфом.
Здесь собраны определения терминов из теории графов. Курсивом выделены ссылки на термины в этом словаре.
Дерево — связный ациклический граф. Связность означает наличие маршрута между любой парой вершин, ацикличность — отсутствие циклов. Отсюда, в частности, следует, что число рёбер в дереве на единицу меньше числа вершин, а между любыми парами вершин имеется один и только один путь.
Семанти́ческая сеть — информационная модель предметной области, имеет вид ориентированного графа. Вершины графа соответствуют объектам предметной области, а дуги (рёбра) задают отношения между ними. Объектами могут быть: понятия, события, свойства, процессы. Таким образом, семантическая сеть — это один из способов представления знаний.
В теории графов теорема Кёнига , доказанная Денешем Кёнигом в 1931, утверждает эквивалентность задач нахождения наибольшего паросочетания и наименьшего вершинного покрытия в двудольных графах. Независимо была открыта, в том же 1931, Йенё Эгервари в несколько более общем виде для случая взвешенных графов.
В теории графов мультиграфом называется граф, в котором разрешается присутствие кратных рёбер, то есть рёбер, имеющих те же самые конечные вершины. Таким образом, две вершины могут быть соединены более чем одним ребром.
Алгори́тм Де́йкстры — алгоритм на графах, изобретённый нидерландским учёным Эдсгером Дейкстрой в 1959 году. Находит кратчайшие пути от одной из вершин графа до всех остальных. Алгоритм работает только для графов без рёбер отрицательного веса. Алгоритм широко применяется в программировании, например, его используют протоколы маршрутизации OSPF и IS-IS.
Поиск в глубину — один из методов обхода графа. Стратегия поиска в глубину, как и следует из названия, состоит в том, чтобы идти «вглубь» графа, насколько это возможно. Алгоритм поиска описывается рекурсивно: перебираем все исходящие из рассматриваемой вершины рёбра. Если ребро ведёт в вершину, которая не была рассмотрена ранее, то запускаем алгоритм от этой нерассмотренной вершины, а после возвращаемся и продолжаем перебирать рёбра. Возврат происходит в том случае, если в рассматриваемой вершине не осталось рёбер, которые ведут в нерассмотренную вершину. Если после завершения алгоритма не все вершины были рассмотрены, то необходимо запустить алгоритм от одной из нерассмотренных вершин.
В теории графов два типа объектов обычно называются циклами.
Матрица инцидентности — одна из форм представления графа, в которой указываются связи между инцидентными элементами графа. Столбцы матрицы соответствуют ребрам, строки — вершинам. Ненулевое значение в ячейке матрицы указывает связь между вершиной и ребром.
Графовая вероятностная модель — это вероятностная модель, в которой в виде графа представлены зависимости между случайными величинами. Вершины графа соответствуют случайным переменным, а рёбра — непосредственным вероятностным взаимосвязям между случайными величинами. Графические модели широко используются в теории вероятностей, статистике, а также в машинном обучении.
Зада́ча о кратча́йшем пути́ — задача поиска самого короткого пути (цепи) между двумя точками (вершинами) на графе, в которой минимизируется сумма весов рёбер, составляющих путь.
В теории графов стягивание ребра — это операция, которая удаляет ребро из графа, а до этого связанные ребром вершины сливаются в одну вершину. Стягивание ребра является фундаментальной операцией в теории о минорах графов. Отождествление вершин — другая форма этой операции с более слабыми ограничениями.
В теории графов псевдолес — это неориентированный граф, в котором любая связная компонента имеет максимум один цикл. То есть это система вершин и рёбер, соединяющих пары вершин, такая, что никакие два цикла не имеют общих вершин и не могут быть связаны путём. Псевдодерево — это связный псевдолес.
Ориентированная раскраска графа — это специальный вид раскраски графов. А именно, это назначение цветов вершинам ориентированного графа, которое
- правильное — никакие две смежные вершины не получают один и тот же цвет,
- сохраняется ориентация — если (x, y) и (u, v) являются дугами в графе, то недопустимо, чтобы цвета вершин x и v, а также цвета вершин y и u совпадали.
Ориентация неориентированного графа — это назначение направлений каждому ребру, что превращает исходный граф в ориентированный граф.