Векторными сферическими гармониками являются векторные функции, преобразующиеся при вращениях системы координат так же, как скалярные сферические функции с теми же индексами, или определенные линейные комбинации таких функций.
2. Часто (см., например, Рассеяние Ми) векторными гармониками называют фундаментальный набор решений векторного уравнения Гельмгольца в сферических координатах.[2][3]
В этом случае векторные сферические гармоники порождаются скалярными функциями, являющимися решением уравнения Гельмгольца с волновым вектором .
Здесь вводятся производящие функции с вещественной угловой частью, но по аналогии можно ввести и комплексные гармоники.
3. Также часто вводятся шаровые векторы[4][5][6][7] , которые являются линейными комбинациями функций , но не являются собственными функциями квадрата орбитального углового момента, но определенным образом ориентированы относительно единичного орта .[1]. Определения и обозначения векторов этого типа в литературе широко варьируются, здесь приводится один из вариантов.
- векторы магнитного типа.
- векторы электрического типа
- продольный шаровой вектор
Для векторов этого типа производящими являются скалярные сферические функции без радиальной части.
Электрические гармоники . изображена дважды
Электрические гармоники . изображена дважды
Электрические гармоники . изображена дважды
Магнитные гармоники . изображена дважды
Магнитные гармоники . изображена дважды
Магнитные гармоники . изображена дважды
Ортогональность
Решения векторного уравнения Гельмгольца подчиняются следующим отношениям ортогональности[3]:
Все остальные интегралы по углам между различными функциями или функциями с различными индексами равны нулю.
Явный вид
Введем обозначение . Явный вид магнитных и электрических гармоник имеет следующую форму:
Можно видеть, что у магнитных гармоник отсутствует радиальная компонента. Для электрических гармоник радиальная компонента убывает быстрее, чем угловые, поэтому на больших ей можно пренебречь. Кроме того, для электрических и магнитных гармоник с совпадающими индексами, угловые компоненты совпадают с точностью до перестановки полярного и азимутального единичных векторов, то есть при больших векторы электрических и магнитных гармоник равны по модулю и перпендикулярны друг другу.
Явный вид продольных гармоник:
Повороты и инверсия системы координат
При поворотах векторные сферические гармоники преобразуются друг через друга так же, как соответствующие скалярные сферические функции, которые являются производящими для конкретного типа векторных гармоник. Например, если производящими функциями являются обычные сферические функции, то векторные гармоники будут тоже преобразовываться с помощью D-матриц Вигнера[1][8][9]
Поведение при поворотах не отличается для электрических, магнитных и продольных гармоник.
При инверсии электрические и продольные сферические гармоники ведут себя так же, как скалярные сферические функции, то есть
а магнитные обладают противоположной четностью:
Разложение плоской волны и интегральные соотношения
В этом параграфе будут использованы следующие обозначения
В случае, когда вместо сферические функции Ханкеля, нужно использовать другие формулы разложения.[10][11] Для векторных сферических гармоник получатся следующие соотношения:
где , а верхний индекс означает, что используются сферические функции Ханкеля.
↑H. Zhang, Yi. Han, Addition theorem for the spherical vector wave functions and its application to the beam shape coeffcients. J. Opt. Soc. Am. B, 25(2):255-260, Feb 2008.
↑S. Stein, Addition theorems for spherical wave functions, Quarterly of Applied Mathematics, 19(1):15-24, 1961.
Градие́нт — вектор, своим направлением указывающий направление наискорейшего роста некоторой скалярной величины .
Моме́нт и́мпульса — векторная физическая величина, характеризующая количество вращательного движения и зависящая от того, сколько массы вращается, как она распределена в пространстве и с какой угловой скоростью происходит вращение.
Де́льта-фу́нкция — обобщённая функция, которая позволяет записать точечное воздействие, а также пространственную плотность физических величин, сосредоточенных или приложенных в одной точке.
Систе́ма координа́т — комплекс определений, реализующий метод координат, то есть способ определять положение и перемещение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки.
Класс трёхмерных параметрических поверхностей определяется функцией , зависящей от параметров и отображающей некоторое связное множество из n-мерного пространства в трёхмерное пространство таким образом, что это отображение является поверхностью. Эта функция задаёт класс поверхностей, а набор параметров — конкретную поверхность из этого класса.
Лагранжиа́н, фу́нкция Лагра́нжа динамической системы, является функцией обобщённых координат и описывает развитие системы. Например, уравнения движения в этом подходе получаются из принципа наименьшего действия, записываемого как
Пряма́я — одно из фундаментальных понятий евклидовой геометрии. При систематическом изложении геометрии прямые линии обычно принимаются за одно из исходных (неопределяемых) понятий, их свойства и связь с другими понятиями определяются аксиомами геометрии.
Полярная система координат — двумерная система координат, в которой каждая точка на плоскости определяется двумя числами — полярным углом и полярным радиусом. Полярная система координат особенно полезна в случаях, когда отношения между точками проще изобразить в виде радиусов и углов; в более распространённой декартовой, или прямоугольной, системе координат, такие отношения можно установить только путём применения тригонометрических уравнений.
Сферическая система координат — трёхмерная система координат, в которой каждая точка пространства определяется тремя числами , где — расстояние до начала координат, а и — зенитный и азимутальный углы соответственно.
Эллиптические функции Якоби — это набор основных эллиптических функций комплексного переменного и вспомогательных тета-функций, которые имеют прямое отношение к некоторым прикладным задачам. Они также имеют полезные аналогии с тригонометрическими функциями, как показывает соответствующее обозначение для . Они не дают самый простой способ развить общую теорию, как замечено недавно: это может быть сделано на основе эллиптических функций Вейерштрасса. Эллиптические функции Якоби имеют в основном параллелограмме по два простых полюса и два простых нуля.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Оператор Д’Аламбера — дифференциальный оператор второго порядка
Криволине́йная систе́ма координа́т, или криволине́йные координа́ты, — система координат в евклидовом (аффинном) пространстве, или в области, содержащейся в нём. Криволинейные координаты не противопоставляются прямолинейным, последние являются частным случаем первых. Применяются обычно на плоскости (n=2) и в пространстве (n=3); число координат равно размерности пространства n. Наиболее известным примером криволинейной системы координат являются полярные координаты на плоскости.
Сферические функции представляют собой угловую часть семейства ортогональных решений уравнения Лапласа, записанную в сферических координатах. Они широко используются для изучения физических явлений в пространственных областях, ограниченных сферическими поверхностями и при решении физических задач, обладающих сферической симметрией. Сферические функции имеют большое значение в теории дифференциальных уравнений в частных производных и теоретической физике, в частности в задачах расчёта электронных орбиталей в атоме, гравитационного поля геоида, магнитного поля планет и интенсивности реликтового излучения.
Здесь приведён список векторных дифференциальных операторов в различных системах координат.
Рассеяние света сферической частицей — классическая задача электродинамики, решённая в 1908 году Густавом Ми для сферической частицы произвольного размера.
Статическая изотропная метрика — это метрика, определяющая статическое изотропное гравитационное поле. Частным случаем этой метрики является метрика Шварцшильда, на случай пустого пространства-времени.
Ме́тод Га́усса в небесной механике и астродинамике используется для первоначального определения параметров орбиты небесного тела по трём наблюдениям.
Диполя́рная, или дипо́льная, систе́ма координа́т — трёхмерная криволинейная ортогональная система координат, основанная на точечном (центральном) диполе, точнее, на его инвариантах преобразования координат.
Мультипольное излучение — излучение, обусловленное изменением во времени мультипольных моментов системы. Используется для описания электромагнитного или гравитационного излучения от изменяющегося во времени (нестационарного) распределения удалённых источников. Мультипольное разложение применяется к физическим явлениям, которые происходят на разных масштабах — от гравитационных волн из-за столкновения галактик до гамма-излучения в результате радиоактивного распада. Мультипольное излучение анализируется способами, схожими с применяемыми для мультипольного разложения полей от стационарных источников. Однако есть важные отличия, поскольку поля мультипольного излучения ведут себя несколько иначе полей от стационарных источников. Эта статья в первую очередь касается электромагнитного мультипольного излучения, хотя гравитационные волны рассматриваются аналогично.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.