Второ́й зако́н Нью́то́на — дифференциальный закон механического движения, описывающий зависимость ускорения тела от равнодействующей всех приложенных к телу сил и массы тела. Один из трёх законов Ньютона. Основной закон динамики.
Алгори́тм Евкли́да — эффективный алгоритм для нахождения наибольшего общего делителя двух целых чисел. Алгоритм назван в честь греческого математика Евклида, который впервые описал его в VII и X книгах «Начал». Это один из старейших численных алгоритмов, используемых в наше время.

Десяти́чная дробь — разновидность дроби, которая представляет собой способ представления действительных чисел в виде


Рыча́г — простейший механизм, представляющий собой балку, вращающуюся вокруг точки опоры.
И́мпульс — векторная физическая величина, являющаяся мерой механического движения тела.
Зако́н сохране́ния эне́ргии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Эта энергия может быть представлена в виде комбинации разных форм, таких как механическая, тепловая, электромагнитная, ядерная и других, для различных систем, таких как элементарные частицы, макроскопические тела, звёзды и галактики, но оставаться неизменной универсальной сохраняющейся величиной. Видимое нарушение закона сохранения энергии требует рассматривать альтернативные объяснения.
Мо́щность — скалярная физическая величина, равная в общем случае скорости изменения, преобразования, передачи или потребления энергии системы. В более узком смысле мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.
Принцип неопределённости Гейзенбе́рга в квантовой механике — фундаментальное соображение, устанавливающее предел точности одновременного определения пары характеризующих систему квантовых наблюдаемых, описываемых некоммутирующими операторами.
Трои́чная систе́ма счисле́ния — позиционная система счисления с целочисленным основанием, равным 3.

Зако́н Берну́лли устанавливает зависимость между скоростью стационарного потока жидкости и её давлением. Согласно этому закону, если вдоль линии тока давление жидкости повышается, то скорость течения убывает, и наоборот. Количественное выражение закона в виде интеграла Бернулли является результатом интегрирования уравнений гидродинамики идеальной жидкости.

Зако́н сохране́ния и́мпульса — закон, утверждающий, что сумма импульсов всех тел системы есть величина постоянная, если векторная сумма внешних сил, действующих на систему тел, равна нулю.

Гравиметрический анализ — метод количественного химического анализа, основанный на точном измерении массы вещества. Использует закон сохранения массы веществ при химических превращениях. Сыграл большую роль в становлении закона постоянства состава химических соединений, закона кратных отношений, периодического закона и др. Применяется для определения химического состава различных объектов, качества сырья и готовой продукции, содержания кристаллизационной воды в солях, зольности топлива и так далее.

Си́ла тя́жести — сила, действующая на любое физическое тело вблизи поверхности астрономического объекта и складывающаяся из силы гравитационного притяжения этого объекта и центробежной силы инерции, вызванной его суточным вращением.

Весы́ — устройство или прибор для определения массы тел (взвешивания) по действующему на них весу, приближённо считая его равным силе тяжести. Вес тела может быть определён как через сравнение с весом эталонной массы, так и через измерение этой силы через другие физические величины.
Уравне́ния Ра́уса — дифференциальные уравнения движения механической системы с идеальными двусторонними голономными связями.

Плаву́честь — свойство погружённого в жидкость тела оставаться в равновесии, не выходя из жидкости и не погружаясь дальше, то есть плавать. Также — раздел теории корабля, изучающий плавучесть.
Механика грунтов — строительная дисциплина, изучающая грунты основания и их взаимодействие с сооружениями.

Статистическая механика или статистическая термодинамика — механика больших ансамблей относительно простых систем, таких как атомы в кристалле, молекулы в газе, фотоны в лазерном пучке, звёзды в галактике, автомобили на шоссе. Статистическая механика использует статистические методы для определения свойств и поведения макроскопических физических систем, находящихся в термодинамическом равновесии, на основе их микроскопической структуры и законов движения, которые считаются заданными. Статистические методы были введены в этом контексте Максвеллом в серии из трех статей (1860—1879) и Больцманом в серии из четырёх статей (1870—1884), которые заложили основы кинетической теории газов. Классическая статистическая механика была основана Гиббсом (1902); а позднее описание микроскопических состояний на основе классической механики было исправлено и дополнено в соответствии с квантовой механикой. Термодинамика, кинетическая теория и статистическая механика — это дисциплины, связанные объектом исследования, но отличающиеся используемыми методами; часто они представлены вместе под общим названием статистической физики. Последовательное построение неравновесной статистической механики было выполнено Н. Н. Боголюбовым в 1946 году. При описании систем в рамках статистической механики используется понятие среднего по ансамблю. Основными уравнениями статистической механики являются уравнения Лиувилля и цепочка уравнений Боголюбова.
Конста́нта равнове́сия — величина, определяющая для данной химической реакции соотношение между термодинамическими активностями исходных веществ и продуктов в состоянии химического равновесия. Зная константу равновесия реакции, можно рассчитать равновесный состав реагирующей смеси, предельный выход продуктов, определить направление протекания реакции.
Фотонный ящик Эйнштейна — гипотетическое устройство, якобы способное, вопреки соотношению неопределённостей между энергией и временем, измерить энергию фотона с любой заданной точностью в любой момент времени, также заданный с любой точностью. Идея этого устройства была выдвинута А. Эйнштейном во время его дискуссии с Н. Бором на Сольвейской конференции в 1930 г. Н. Бор объяснил этот парадокс и подчеркнул, что необходимо различать собственно измерительные приборы, служащие для определения системы отсчёта и те части прибора, которые являются объектами исследования и подвержены квантовым эффектам.