Откры́тые (нерешённые) математи́ческие пробле́мы — задачи, которые рассматривались математиками, но до сих пор не решены. Часто имеют форму гипотез, которые предположительно верны, но нуждаются в доказательстве.
Шестна́дцатая пробле́ма Ги́льберта — одна из 23 задач, которые Давид Гильберт предложил 8 августа 1900 года на II Международном конгрессе математиков.
Третья проблема Гильберта — третья из проблем, поставленных Давидом Гильбертом в его знаменитом докладе на II Международном Конгрессе математиков в Париже в 1900 году. Эта проблема посвящена вопросам равносоставленности многогранников: возможности разрезания двух многогранников равного объёма на конечное число равных частей-многогранников.
Число Пизо — любое алгебраическое целое число, большее единицы, модули всех сопряжённых которого строго меньше единицы. Эти числа открыты Акселем Туэ в 1912 году, изучались Годфри Харди с 1919 в связи с диофантовыми приближениями, но получили известность после публикации диссертации Шарля Пизо в 1938. Исследования продолжили Тирукканнапурам Виджаярагхаван и Рафаэль Салем в 1940-х годах.
Теорема Семереди — утверждение комбинаторной теории чисел о наличии длинных арифметических прогрессий в плотных множествах.
Задача со счастливым концом — утверждение о том, что любое множество из пяти точек на плоскости в общем положении имеет подмножество из четырёх точек, которые являются вершинами выпуклого четырёхугольника.
Проблема круга Гаусса — задача определения количества точек целочисленной решётки, попадающих в круг радиуса r с центром в начале координат. Первый успех в решении этой задачи был сделан Гауссом, в честь него и названа проблема.
В теории игр, особенно при изучении диофантовых приближений, гипотеза об одиноком бегуне — это гипотеза, выдвинутая Уиллсом в 1967. Приложения гипотезы широко представлены в математике, они включают задачи ограничения обзора и вычисления хроматического числа дистанционных и циркулянтных графов. Гипотеза получила образное имя благодаря Годдину в 1998.
Группа Григорчука — первый пример конечнопорождённой группы промежуточного роста.
Ласло Бабаи — венгерский и американский учёный, профессор математики и информатики в Чикагском университете. Его исследования сосредоточены в следующих отраслях: теория сложности вычислений, теория алгоритмов, комбинаторика, и конечные группы с акцентом на взаимодействие между этими отраслями. Автор более 180 научных трудов.
Теорема сумм-произведений — теорема арифметической комбинаторики, устанавливающая неструктурированность любого достаточно большого множества относительно хотя бы одной из операций поля. Название обсуловлено тем, что метрикой структурированности относительно той или иной операции является количество различных сумм или произведений, которые можно составить из элементов данного множества.
Леона́рд Юджи́н Ди́ксон — американский математик. Труды в области общей алгебры, теории групп, теории чисел, истории математики.
Задачи теории решёток — это класс задач оптимизации на решётках. Гипотетическая плохая разрешимость таких задач является центральным местом для построения стойких криптосистем на решётках. Для приложений в таких криптосистемах обычно рассматриваются решётки на векторных пространствах или свободных модулях.
Проблема Ружи – Семереди или (6,3)-проблема спрашивает о максимальном числе рёбер в графе, в котором любое ребро принадлежит единственному треугольнику. Эквивалентно, проблема спрашивает о максимальном числе рёбер в сбалансированном двудольном графе, рёбра которого можно разбить на линейное число порождённых паросочетаний, или максимальное число троек, которые можно выбрать из точек так, что каждые шесть точек содержат максимум две тройки. Проблема названа именем Имре З. Ружи и Эндре Семереди, которые первыми доказали, что ответ меньше, чем на медленно растущий множитель.
Сумма трёх кубов — в математике открытая проблема о представимости целого числа в виде суммы трёх кубов целых чисел.
Топологический граф — представление графа на плоскости, в котором вершины графа представлены различными точками, а рёбра кривыми Жордана, соединяющими соответствующие пары точек. Точки, представляющие вершины графа, и дуги, представляющие рёбра, называются вершинами и рёбрами топологического графа. Обычно предполагается, что любые два ребра топологического графа пересекаются конечное число раз, при этом ни одно ребро не проходит через вершину и никакие два ребра не касаются друг друга. Топологический граф называется также «рисунком» графа.
Четвёртая степень числа — число, равное произведению четырёх одинаковых чисел.