Вычислительная математика — раздел математики, включающий круг вопросов, связанных с производством разнообразных вычислений. В более узком понимании вычислительная математика — теория численных методов решения типовых математических задач. Современная вычислительная математика включает в круг своих проблем изучение особенностей вычисления с применением компьютеров.
Генератор псевдослучайных чисел — алгоритм, порождающий последовательность чисел, элементы которой почти независимы друг от друга и подчиняются заданному распределению.
Линейный конгруэнтный метод — один из методов генерации псевдослучайных чисел. Применяется в простых случаях и не обладает криптографической стойкостью. Входит в стандартные библиотеки различных компиляторов.
Вопрос определения того, является ли натуральное число простым, известен как проблема простоты.
Медиа́на, или серединное значение набора чисел — число, которое находится в середине этого набора, если его упорядочить по возрастанию, то есть такое число, что половина из элементов набора не меньше него, а другая половина не больше. Другое равносильное определение: медиана набора чисел — это число, сумма расстояний от которого до всех чисел из набора минимальна. Это определение естественным образом обобщается на многомерные наборы данных и называется 1-медианой.
Методы Мо́нте-Ка́рло (ММК) — группа численных методов для изучения случайных процессов. Суть метода заключается в следующем: процесс описывается математической моделью с использованием генератора случайных величин, модель многократно обсчитывается, на основе полученных данных вычисляются вероятностные характеристики рассматриваемого процесса. Например, чтобы узнать методом Монте-Карло, какое в среднем будет расстояние между двумя случайными точками в круге, нужно взять координаты большого числа случайных пар точек в границах заданной окружности, для каждой пары вычислить расстояние, а потом для них посчитать среднее арифметическое.
Вихрь Мерсе́нна — генератор псевдослучайных чисел (ГПСЧ), алгоритм, разработанный в 1997 году японскими учёными Макото Мацумото и Такудзи Нисимура. Вихрь Мерсенна генерирует псевдослучайные последовательности чисел с периодом, равным одному из простых чисел Мерсенна, отсюда этот алгоритм и получил своё название, и обеспечивает быструю генерацию высококачественных по критерию случайности псевдослучайных чисел.
Ме́тод обра́тного преобразова́ния — способ генерации случайных величин с заданной функцией распределения, путём модификации работы генератора равномерно распределённых чисел.
Ро-алгоритм — предложенный Джоном Поллардом в 1975 году алгоритм, служащий для факторизации целых чисел. Данный алгоритм основывается на алгоритме Флойда поиска длины цикла в последовательности и некоторых следствиях из парадокса дней рождения. Алгоритм наиболее эффективен при факторизации составных чисел с достаточно малыми множителями в разложении. Сложность алгоритма оценивается как .
ISAAC — генератор псевдослучайных чисел, разработанный в 1996 году Робертом Дж. Дженкинсом младшим, как развитие разработанных им же алгоритмов IA и IBAA. Этот генератор относят к разряду криптостойких генераторов псевдослучайных чисел, хотя полное и строгое доказательство проведено не было.
Аппара́тный генера́тор случа́йных чи́сел (генератор истинно случайных чисел) — устройство, которое генерирует последовательность случайных чисел на основе измеряемых, хаотически изменяющихся параметров протекающего физического процесса. Работа таких устройств часто основана на использовании надёжных источников энтропии, таких, как тепловой шум, дробовой шум, фотоэлектрический эффект, квантовые явления и т. д. Эти процессы в теории абсолютно непредсказуемы, на практике же получаемые из них случайные числа проверяются с помощью специальных статистических тестов.
Тестирование псевдослучайных последовательностей — совокупность методов определения меры близости заданной псевдослучайной последовательности к случайной. В качестве такой меры обычно выступает наличие равномерного распределения, большого периода, равной частоты появления одинаковых подстрок и т. п.
Криптографически стойкий генератор псевдослучайных чисел — это генератор псевдослучайных чисел с определёнными свойствами, позволяющими использовать его в криптографии.
Алгоритм Ярроу — криптографически стойкий генератор псевдослучайных чисел. В качестве названия выбран тысячелистник, засушенные стебли которого служат источником энтропии при гадании.
Случайная перестановка — это случайное упорядочение множества объектов, то есть случайная величина, элементарными событиями которой являются перестановки. Использование случайных перестановок зачастую является базой в областях, использующих рандомизированные алгоритмы. К таким областям относятся теория кодирования, криптография и моделирование. Хорошим примером случайной перестановки является тасование колоды карт.
Тасование Фишера — Йетса (названо в честь Рональда Фишера и Фрэнка Йейтса, известно также под именем Тасование Кнута , — это алгоритм создания случайных перестановок конечного множества, попросту говоря, для случайного тасования множества. Вариант тасования Фишера — Йетса, известный как алгоритм Саттоло , может быть использован для генерации случайного цикла перестановок длины n. Правильно реализованный алгоритм тасования Фишера — Йетса несмещённый, так что каждая перестановка генерируется с одинаковой вероятностью. Современная версия алгоритма очень эффективна и требует время, пропорциональное числу элементов множества, и не требует дополнительной памяти.
Алгоритм «Зиккурат» — это алгоритм выборки псевдослучайных чисел. Будучи представителем класса алгоритмов выборки с отклонением, он в работе своей опирается на источник равномерно распределенных случайных чисел — обыкновенно это генератор псевдослучайных чисел, либо же предварительно вычисленная таблица. Алгоритм используется для генерации значений на основе монотонно убывающего вероятностного распределения. Также может быть применен по отношению к симметричному унимодальному распределению, такому как нормальное, с помощью выбора значений из одной его половины, а затем, при необходимости, перехода к симметричному значению с помощью операции арифметического отрицания. Одним из авторов алгоритма, разработанного в 1960-е, является Джордж Марсалья.
Экстрактор случайности — функция, которая применяется к выходу из слабо случайного источника энтропии, вместе с коротким равномерно распределённым случайным начальным значением и генерирует случайный выход, который выглядит независимым от источника и равномерно распределён. Примерами слабо случайных источников могут быть радиоактивный распад или тепловой шум. Единственное ограничение на возможные источники состоит в том, что не должно быть никакого способа, которым они могут полностью контролироваться, рассчитываться или предсказываться, таким образом, чтобы могла быть установлена нижняя граница для их уровня энтропии. Для данного источника экстрактор случайности может даже считаться истинным генератором случайных чисел, тем не менее нет единственного экстрактора, который, как доказывали, производил бы действительно случайный выход из любого типа слабо случайного источника.
В статистике методы Монте-Карло с марковскими цепями (англ. MCMC) — это класс алгоритмов для семплирования, моделирующих некоторое распределение вероятностей. Построив марковскую цепь, которая имеет целевое распределение в качестве своего равновесного, можно получить выборку с тем же распределением путем записи состояний цепи. Чем больше шагов будет использовано, тем ближе распределение выборки будет к целевому. Для построения цепей используются различные алгоритмы, например, алгоритм Метрополиса-Гастингса.