Математи́ческое ожида́ние — понятие в теории вероятностей, означающее среднее значение случайной величины. В случае непрерывной случайной величины подразумевается взвешивание по плотности распределения. Математическое ожидание случайного вектора равно вектору, компоненты которого равны математическим ожиданиям компонентов случайного вектора.
В математике барице́нтр, или геометри́ческий центр, двумерной фигуры — это среднее арифметическое положений всех точек данной фигуры. Определение распространяется на любой объект в n-мерном пространстве. Радиус-вектор барицентра в трёхмерном случае вычисляется как
- ,
Сре́днее арифмети́ческое — разновидность среднего значения. Определяется как число, равное сумме всех чисел множества, делённой на их количество. Является одной из наиболее распространённых мер центральной тенденции.
Методы Мо́нте-Ка́рло (ММК) — группа численных методов для изучения случайных процессов. Суть метода заключается в следующем: процесс описывается математической моделью с использованием генератора случайных величин, модель многократно обсчитывается, на основе полученных данных вычисляются вероятностные характеристики рассматриваемого процесса. Например, чтобы узнать методом Монте-Карло, какое в среднем будет расстояние между двумя случайными точками в круге, нужно взять координаты большого числа случайных пар точек в границах заданной окружности, для каждой пары вычислить расстояние, а потом для них посчитать среднее арифметическое.
Непреры́вное равноме́рное распределе́ние в теории вероятностей — распределение случайной вещественной величины, принимающей значения, принадлежащие некоторому промежутку конечной длины, характеризующееся тем, что плотность вероятности на этом промежутке почти всюду постоянна.
Ме́тод обра́тного преобразова́ния — способ генерации случайных величин с заданной функцией распределения, путём модификации работы генератора равномерно распределённых чисел.
Распределе́ние Коши́ в теории вероятностей — класс абсолютно непрерывных распределений. Случайная величина, имеющая распределение Коши, является стандартным примером величины, не имеющей математического ожидания и дисперсии.
Пло́тность вероя́тности — один из способов задания распределения случайной величины. Во многих практических приложениях понятия «плотность вероятности» и «плотность (распределения) случайной величины» или «функция распределения вероятностей» фактически синонимизируются и под ними подразумевается вещественная функция, характеризующая сравнительную вероятность реализации тех или иных значений случайной переменной (переменных).
Поря́дковые стати́стики в математической статистике - это упорядоченная по неубыванию выборка одинаково распределённых независимых случайных величин и её элементы, занимающие строго определенное место в ранжированной совокупности.
Семплирование по Гиббсу — алгоритм для генерации выборки совместного распределения множества случайных величин. Он используется для оценки совместного распределения и для вычисления интегралов методом Монте-Карло. Этот алгоритм является частным случаем алгоритма Метрополиса-Гастингса и назван в честь физика Джозайи Гиббса.
Расстояние Ку́льбака — Ле́йблера, РКЛ, информационное расхождение, различающая информация, информационный выигрыш, относительная энтропия — неотрицательнозначный функционал, являющийся несимметричной мерой удалённости друг от друга двух вероятностных распределений, определённых на общем пространстве элементарных событий. Часто применяется в теории информации и математической статистике.
Метод опорных векторов — набор схожих алгоритмов обучения с учителем, использующихся для задач классификации и регрессионного анализа. Принадлежит семейству линейных классификаторов и может также рассматриваться как частный случай регуляризации по Тихонову. Особым свойством метода опорных векторов является непрерывное уменьшение эмпирической ошибки классификации и увеличение зазора, поэтому метод также известен как метод классификатора с максимальным зазором.
Семплирование — в математической статистике обобщенное название методов управления начальной выборкой при известной цели моделирования, которые позволяют выполнить структурно-параметрическую идентификацию наилучшей статистической модели стационарного эргодического случайного процесса.
Факторизация с помощью эллиптических кривых — алгоритм факторизации натурального числа с использованием эллиптических кривых. Данный алгоритм имеет субэкспоненциальное время выполнения. Является третьим по скорости работы после общего метода решета числового поля и метода квадратичного решета.
Выборка псевдослучайных чисел — это практика генерации псевдослучайных чисел, распределенных согласно заданному вероятностному распределению. Базируется на численных методах.
Алгоритм «Зиккурат» — это алгоритм выборки псевдослучайных чисел. Будучи представителем класса алгоритмов выборки с отклонением, он в работе своей опирается на источник равномерно распределенных случайных чисел — обыкновенно это генератор псевдослучайных чисел, либо же предварительно вычисленная таблица. Алгоритм используется для генерации значений на основе монотонно убывающего вероятностного распределения. Также может быть применен по отношению к симметричному унимодальному распределению, такому как нормальное, с помощью выбора значений из одной его половины, а затем, при необходимости, перехода к симметричному значению с помощью операции арифметического отрицания. Одним из авторов алгоритма, разработанного в 1960-е, является Джордж Марсалья.
Задача Данцера — Грюнбаума — проблема комбинаторной геометрии, ставящая вопрос о том, какое максимальное число точек можно разместить в многомерном пространстве, чтобы они не образовывали между собой прямых или тупых углов. Известно, что на плоскости можно расположить максимум три такие точки, в трёхмерном пространстве можно расположить пять таких точек. В 2017 году было доказано, что в пространстве размерности можно расположить Θ таких точек.
В статистике методы Монте-Карло с марковскими цепями (англ. MCMC) — это класс алгоритмов для семплирования, моделирующих некоторое распределение вероятностей. Построив марковскую цепь, которая имеет целевое распределение в качестве своего равновесного, можно получить выборку с тем же распределением путем записи состояний цепи. Чем больше шагов будет использовано, тем ближе распределение выборки будет к целевому. Для построения цепей используются различные алгоритмы, например, алгоритм Метрополиса-Гастингса.