Вычислительная математика — раздел математики, включающий круг вопросов, связанных с производством разнообразных вычислений. В более узком понимании вычислительная математика — теория численных методов решения типовых математических задач. Современная вычислительная математика включает в круг своих проблем изучение особенностей вычисления с применением компьютеров.
Математи́ческий ана́лиз — совокупность разделов математики, соответствующих историческому разделу под наименованием «анализ бесконечно малых», объединяет дифференциальное и интегральное исчисления.
Дифференциа́льное уравне́ние в ча́стных произво́дных — дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные производные.
Критической точкой дифференцируемой функции называется точка, в которой её дифференциал обращается в нуль. Это условие эквивалентно тому, что в данной точке все частные производные первого порядка обращаются в нуль, геометрически оно означает, что касательная гиперплоскость к графику функции горизонтальна. В простейшем случае n=1 это значит, что производная в данной точке равна нулю. Это условие является необходимым для того, чтобы внутренняя точка области могла быть точкой локального минимума или максимума дифференцируемой функции.
Интегральное исчисление — раздел математического анализа, в котором изучаются понятия интеграла, его свойства и методы вычислений.
Специальные функции — встречающиеся в различных приложениях математики функции, которые не выражаются через элементарные функции. Специальные функции представляются в виде рядов или интегралов.
Гипергеометри́ческая фу́нкция — одна из специальных функций. Определяется внутри круга как сумма гипергеометрического ряда
Квадрату́ра — математический термин, первоначально обозначавший нахождение площади какой-либо фигуры или поверхности. В дальнейшем смысл термина постепенно менялся. Задачи квадратуры послужили одним из главных источников возникновения в конце XVII века математического анализа.
Альтернати́ва Фредго́льма — совокупность теорем Фредгольма о разрешимости интегрального уравнения Фредгольма второго рода.
Константин Сергеевич Сибирский — молдавский советский математик, специалист в области дифференциальных уравнений. Доктор физико-математических наук (1970), профессор (1971), член-корреспондент (1972) и академик (1981) Академии наук Молдавской ССР, лауреат государственной премии МССР (1979).
Многомерный анализ является обобщением дифференциального и интегрального исчислений для случая нескольких переменных.
Уравнение Рикка́ти — обыкновенное дифференциальное уравнение первого порядка вида
Фундамента́льная ма́трица системы линейных однородных дифференциальных уравнений — матрица, столбцы которой образуют фундаментальную систему решений этой системы.
Численные (вычислительные) методы — методы решения математических задач в численном виде.
Метод граничного элемента — метод решения краевой задачи, в котором благодаря использованию формул Грина, она сводится к интегральному уравнению на границе расчетной области.
В математике индекс точки или порядок точки относительно замкнутой кривой на плоскости — это целое число, представляющее число полных оборотов, которое делает кривая вокруг заданной точки против часовой стрелки. Иногда говорят о порядке кривой относительно точки. Индекс зависит от ориентации кривой и принимает отрицательное значение, если обход кривой происходит по часовой стрелке.
Характеристическое число ядра интегрального уравнения — это комплексное значение , при котором однородное интегральное уравнение Фредгольма второго рода
Владимир Владимирович Васильев ― учёный-математик, доктор физико-математических наук, профессор, доцент, организатор математического факультета Иркутского государственного университета, а также первого в Восточной Сибири и на Дальнем Востоке диссертационного совета по математике. Депутат Иркутского городского совета трёх созывов. Является автором множества научных работ.
Список эпонимов, названных в честь немецкого математика, механика и физика Бернхарда Римана (1826—1866).
- Геометрия Римана — одна из трёх «великих геометрий», которые, помимо римановской, включают геометрию Евклида и геометрию Лобачевского.
- Гипотеза Римана — одна из проблем тысячелетия, сформулированная Бернхардом Риманом в 1859 году.
- Дзета-функция Римана — функция комплексного переменного, определяемая с помощью ряда Дирихле.
- Дифференциальное уравнение Римана — обобщение гипергеометрического уравнения, позволяющее получить регулярные сингулярные точки в любой точке сферы Римана.
- Дифферинтеграл Римана — Лиувилля — обобщение понятия повторной первообразной, отображающее вещественную функцию в другую функцию того же типа.
- Задача Римана о распаде произвольного разрыва — задача о построении аналитического решения нестационарных уравнений механики сплошных сред, в применении к распаду произвольного разрыва.
- Инварианты Римана — в газовой динамике — комбинированные параметры для некоторых частных течений газообразной среды.
- Интеграл Римана — одно из первых формализаций понятия интеграла.
- Интеграл Римана — Стилтьеса — обобщение определённого интеграла, предложенное в 1894 году Стилтьесом.
- Кратный интеграл Римана — один из вариантов кратных интегралов по измеримым множествам.
- Неравенство Римана — Пенроуза — неравенство, связывающее минимальную массу тела и площадь ловушечной поверхности чёрной дыры.
- Обобщённые гипотезы Римана — формулирование гипотезы Римана для L-функций Дирихле.
- Основная теорема римановой геометрии — наименование нескольких математических утверждений: Теоремы о связности Леви-Чивиты и Теоремы Нэша о регулярных вложениях.
- Производная Римана — одно из симметричных предельных определений производной.
- Псевдориманово многообразие — многообразие, в котором задан метрический тензор, невырожденный в каждой точке, но не обязательно положительно определённый.
- Риманова геометрия — раздел дифференциальной геометрии, главным объектом изучения которого являются римановы многообразия, то есть гладкие многообразия с дополнительной структурой, римановой метрикой.
- Риманова поверхность — традиционное в комплексном анализе название одномерного комплексного дифференцируемого многообразия.
- Риманова субмерсия — субмерсия между римановыми многообразиями, которая инфинитезимально является ортогональной проекцией.
- Риманово многообразие — вещественное дифференцируемое многообразие M, в котором каждое касательное пространство снабжено скалярным произведением g — метрическим тензором, меняющимся от точки к точке гладким образом.
- Субриманово многообразие — математическое понятие, обобщающее риманово многообразие.
- Сумма Римана — одно из классических определений интегральных сумм.
- Сфера Римана — риманова поверхность, естественная структура на расширенной комплексной плоскости, являющаяся комплексной проективной прямой.
- Тензор кривизны Римана — стандартный способ выражения кривизны римановых многообразий, а в общем случае — произвольных многообразий аффинной связности, без кручения или с кручением.
- Теорема Римана об отображении — важнейшая закономерность 2-мерной конформной геометрии и одномерного комплексного анализа.
- Теорема Римана об условно сходящихся рядах — теорема математического анализа, утверждающая, что перестановкой членов произвольного условно сходящегося ряда можно получить произвольное значение.
- Теорема Римана об устранимой особой точке — утверждение из теории функций комплексной переменной о заполнении устранимого разрыва.
- Теорема Римана — Роха — важная теорема математики, особенно в комплексном анализе и алгебраической геометрии, помогающая в вычислении размерности пространства мероморфных функций с предписанными нулями и разрешёнными полюсами.
- Условия Коши — Римана — соотношения, связывающие вещественную и мнимую части всякой дифференцируемой функции комплексного переменного.
- Формула Римана — фон Мангольдта — выражение, описывающее распределение нулей дзета-функции Римана.
- Функция Римана — одна из функций, определённых Риманом: Дзета-функция Римана, Кси-функция Римана, Тета-функция Римана, Функция Римана, Функция Римана, Функция Римана (ТФДП).
- Функция Римана (ТФДП) — пример функции вещественной переменной, которая непрерывна на множестве иррациональных чисел, но разрывна на множестве рациональных.
Список объектов, названных в честь французского математика XIX века Огюстена Луи Коши.
- Горизонт Коши
- Задача Коши — задача нахождения решения дифференциального уравнения, удовлетворяющего начальным условиям.
- Интеграл Коши — Лагранжа — интеграл уравнений движения идеальной жидкости в случае потенциальных течений.
- Интегральная теорема Коши — интеграл от аналитической функции по замкнутой кривой в односвязной области равен нулю.
- Интегральная формула Коши — соотношение для голоморфных функций комплексного переменного, связывающее значение функции в точке с её значениями на контуре, окружающем точку.
- Интегральный признак Коши — Маклорена — признак сходимости убывающего положительного числового ряда.
- Коши — небольшой ударный кратер на видимой стороне Луны.
- Критерий Коши равномерной сходимости несобственных интегралов.
- Критерий сходимости Коши — критерий сходимости числовых рядов.
- Лемма Коши — Фробениуса — классический результат комбинаторной теории групп, даёт выражение на число орбит в действии группы.
- Матрица Коши
- Матрица Коши — матрица, с помощью которых выражаются решения систем неоднородных дифференциальных уравнений.
- Неравенство Коши — Буняковского — обобщение неравенства треугольника, связывает норму и скалярное произведение векторов в евклидовом или гильбертовом пространстве.
- Неравенство Коши — соотношение среднего арифметического, среднего геометрического, среднего гармонического и среднего квадратического.
- Принцип Коши — Кантора — лемма о вложенных отрезках, доказывающая полноту множества вещественных чисел.
- Радикальный признак Коши — признак сходимости числового ряда.
- Распределение Коши — класс вероятностных распределений.
- Телескопический признак Коши — признак сходимости положительных числовых рядов.
- Тензор деформации Коши-Грина — тензор, который характеризует сжатие (растяжение) и изменение формы в каждой точке тела при деформации.
- Тензор напряжений Коши — тензор, описывающий механические напряжения в произвольной точке нагруженного тела при малых деформациях.
- Теоре́ма Больцано — Коши — если непрерывная функция, определённая на вещественном промежутке, принимает два значения, то она принимает и любое значение между ними.
- Теорема Коши о вычетах — даёт способ вычисления интеграла мероморфной функции по замкнутому контуру.
- Теорема Коши — Адамара о степенном ряде — оценка радиуса сходимости некоторых степенных рядов.
- Теорема Коши — Дэвенпорта в аддитивной комбинаторике: размер множества сумм двух множеств в группе вычетов никогда не оказывается существенно меньше, чем сумма их размеров.
- Теорема Коши — Ковалевской — теорема о существовании и единственности локального решения задачи Коши для дифференциального уравнения в частных производных.
- Теорема Коши о многогранниках — грани многогранника вместе с правилом склейки полностью определяют выпуклый многогранник.
- Теорема Коши о среднем значении — обобщение формулы конечных приращений.
- Теорема Коши — Пеано — теорема о существовании решения обыкновенного дифференциальное уравнения.
- Теорема Коши — Пуанкаре — обобщение на случай многомерного комплексного пространства интегральной теоремы Коши.
- Теорема Коши — если порядок конечной группы делится на простое число , то содержит элементы порядка .
- Уравнение Коши - Эйлера — вид линейного дифференциального уравнения, допускающего простой алгоритм решения.
- Условия Коши — Римана — соотношения, связывающие вещественную и мнимую части всякой дифференцируемой функции комплексного переменного.
- Формула Бине — Коши — теорема об определителе произведения двух матриц, которое является квадратной матрицей
- Фундаментальная последовательность Коши — последовательность точек метрического пространства такая, что для любого ненулевого заданного расстояния существует элемент последовательности, начиная с которого все элементы последовательности находятся друг от друга на расстоянии менее, чем заданное.
- Условие Коши — критерий сходимости фундаментальной последовательности Коши.
- Функциональное уравнение Коши
- Число Коши — критерий подобия в механике сплошных сред.