Факториза́цией натурального числа называется его разложение в произведение простых множителей. Существование и единственность такого разложения следует из основной теоремы арифметики.
Тест Аграва́ла — Кая́ла — Саксе́ны — единственный известный на данный момент универсальный полиномиальный, детерминированный и безусловный тест простоты чисел, основанный на обобщении малой теоремы Ферма на многочлены.
Длинная арифметика — выполняемые с помощью вычислительной машины арифметические операции над числами, разрядность которых превышает длину машинного слова данной вычислительной машины. Эти операции реализуются не аппаратно, а программно, с использованием базовых аппаратных средств работы с числами меньших порядков. Частный случай — арифметика произвольной точности — относится к арифметике, в которой длина чисел ограничена только объёмом доступной памяти.
Хроматический многочлен — многочлен, изучаемый в алгебраической теории графов, представляющий число раскрасок графа как функцию от числа цветов. Первоначально определён Джорджем Биркгофов для попытки решения на проблемы четырёх красок. Обобщен и систематически изучен Хасслером Уитни, Татт обобщил хроматический многочлен до многочлена Татта, связав его с моделью Поттса статистической физики.
Алгоритм Берлекэмпа — алгоритм, предназначенный для факторизации унитарных многочленов над конечным полем. Разработан Элвином Берлекэмпом в 1967 году. Может использоваться также для проверки неприводимости многочленов над конечными полями. Основная идея алгоритма заключается в возможности представления исходного многочлена в виде произведения наибольших общих делителей самого многочлена и некоторых многочленов, которые с точностью до свободного члена являются -разлагающими.
Многочлены Шапиро — последовательность многочленов, впервые изученная Гарольдом Шапиро в 1951 году при рассмотрении величин некоторых специальных тригонометрических сумм. С точки зрения обработки сигналов, полиномы Шапиро обладают хорошими автокорреляционными свойствами, и их значения в единичном круге малы. Первые члены последовательности:
- ,
Общий метод решета числового поля — метод факторизации целых чисел. Является наиболее эффективным алгоритмом факторизации чисел длиной более 110 десятичных знаков. Сложность алгоритма оценивается эвристической формулой
Кольцо многочленов — кольцо, образованное многочленами от одной или нескольких переменных с коэффициентами из другого кольца. Изучение свойств колец многочленов оказало большое влияние на многие области современной математики; можно привести примеры теоремы Гильберта о базисе, конструкции поля разложения и изучения свойств линейных операторов.
Ранцевая криптосистема Шора-Ривеста была предложена в 1985 году. В настоящее время она является единственной известной схемой шифрования, основанной на задаче о ранце, которая не использует модульного умножения для маскировки простой задачи о ранце На данный момент создано множество рюкзачных криптосистем, например ранцевая криптосистема Меркла — Хеллмана. Однако практически все существующие на сегодняшний день взломаны или признаны потенциально небезопасными, примечательным исключением является схема Шор-Ривеста. Криптосистема Шора-Ривеста является одной из немногих не взломанных систем.
Функция Гильберта, ряд Гильберта и многочлен Гильберта градуированной коммутативной алгебры, конечно порождённой над полем — это три тесно связанных понятия, которые позволяют измерить рост размерности однородных компонент алгебры.
Множество больших тригонометрических сумм — понятие теории чисел — множество индексов, в которых преобразование Фурье характеристической функции заданного подмножества группы принимает достаточно большие значения.
Round5 — это постквантовая система шифрования с открытым ключом, основанная на общей задаче обучения с округлением. Данная система является альтернативой для алгоритма RSA и эллиптических кривых и предназначена для защиты от квантовых компьютеров. Round5 состоит из алгоритмов для реализации механизма инкапсуляции ключей и схемы шифрования с открытым ключом. Данные алгоритмы попадают под категорию криптография на решётках.
Двоичный код Гоппы — код коррекции ошибок из класса общих кодов Гоппы, описан Валерием Денисовичем Гоппой. В сравнении с другими вариантами, бинарная структура даёт несколько математических преимуществ, а также подходит для общего использования в вычислительной технике и телекоммуникациях. Двоичные коды Гоппы обладают интересными свойствами, полезными в криптосистемах, подобных McEliece.
Алгоритм Тоома — Кука, иногда упоминаемый как Tоом-3 — это алгоритм умножения больших чисел, названный именами Андрея Леоновича Тоома, предложившего новый алгоритм с низкой сложностью и Стивена Кука, более ясно его описавшего.