Теорема Вольстенхольма утверждает, что для всякого простого числа выполняется сравнение:
Некоторые значения гармонических чисел
Числитель и знаменатель несократимой дроби, представляющей собой n-e гармоническое число, являются n-ми членами целочисленных последовательностей A001008 и A002805, соответственно.
Дзе́та-фу́нкция Ри́мана — функция комплексного переменного , при , определяемая с помощью ряда Дирихле:
Гамма-функция — математическая функция. Была введена Леонардом Эйлером, а своим обозначением гамма-функция обязана Лежандру.
Тригонометри́ческие фу́нкции — элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе. Эти функции нашли широкое применение в самых разных областях науки. По мере развития математики определение тригонометрических функций было расширено, в современном понимании их аргументом может быть произвольное вещественное или комплексное число.
Постоянная Э́йлера — Маскеро́ни или постоянная Эйлера — математическая константа, определяемая как предел разности между частичной суммой гармонического ряда и натуральным логарифмом числа:
Ниже приведён список интегралов от экспоненциальной функции. В списке везде опущена константа интегрирования.
Фу́нкции Бе́сселя в математике — семейство функций, являющихся каноническими решениями дифференциального уравнения Бесселя:
Эллипти́ческий интегра́л — некоторая функция над полем действительных или комплексных чисел, которая может быть формально представлена в следующем виде:
,
Гармони́ческий ряд — сумма, составленная из бесконечного количества членов, обратных последовательным числам натурального ряда:
.
В математике дига́мма-фу́нкция определяется как логарифмическая производная гамма-функции:
Постоя́нная Апери́ — вещественное число, обозначаемое , которое равно сумме обратных к кубам целых положительных чисел и, следовательно, является частным значением дзета-функции Римана:
.
Бе́та-фу́нкция Дирихле́ в математике, иногда называемая бета-функцией Каталана — специальная функция, тесно связанная с дзета-функцией Римана. Она является частным случаем L-функции Дирихле. Она названа в честь немецкого математика Петера Густава Лежён-Дирихле, а альтернативное название — в честь бельгийского математика Эжена Шарля Каталана.
Полига́мма-фу́нкция порядка m в математике определяется как (m+1)-я производная натурального логарифма гамма-функции,
В математике Дзета-функция Гурвица, названная в честь Адольфа Гурвица, — это одна из многочисленных дзета-функций, являющихся обобщениями дзета-функции Римана. Формально она может быть определена степенным рядом для комплексных аргументов s, при Re(s) > 1, и q, Re(q) > 0:
Функция Вебера — неэлементарная функция, которая является частным решением неоднородного уравнения Бесселя:
Функции Кельвина — группа бесселевых функций. Каждая их пара представляют решения дифференциального уравнения:
Постоя́нная Глейшера — Кинкелина в математике — это вещественное число, обозначаемое A, которое связано с K-функцией и G-функцией Барнса, а также может быть выражено через значение производной дзета-функции Римана ,
.
Карл Юхан Мальмстен — шведский математик и политический деятель. Известен своими ранними работами по комплексному анализу, теории некоторых специальных функций, а также как сооснователь математического журнала Acta Mathematica.
Тета-функции — это специальные функции от нескольких комплексных переменных. Они играют важную роль во многих областях, включая теории абелевых многообразий, пространства модулей и квадратичных форм. Они применяются также в теории солитонов. После обобщения к алгебре Грассмана функции появляются также в квантовой теории поля.
Натуральный логарифм 2 в десятичной системе счисления равен приблизительно
Эта-функция Дирихле в аналитической теории чисел — функция, определённая следующим рядом Дирихле, сходящимся для любого комплексного числа s, у которого действительная часть больше 0:
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.