Гелий-3
Гелий-3 | |
---|---|
Название, символ | Гелий-3, 3He |
Нейтронов | 1 |
Свойства нуклида | |
Атомная масса | 3,0160293191(26)[1] а. е. м. |
Дефект массы | 14 931,2148(24)[1] кэВ |
Удельная энергия связи (на нуклон) | 2572,681(1)[1] кэВ |
Изотопная распространённость | 0,000137(3)[2] % |
Период полураспада | стабильный[2] |
Родительские изотопы | 3H (β−) |
Спин и чётность ядра | 1/2+[2] |
Таблица нуклидов | |
Медиафайлы на Викискладе |
Ге́лий-3 — стабильный изотоп гелия. Ядро гелия-3 (гелион) состоит из двух протонов и одного нейтрона, в отличие от более тяжёлого другого стабильного изотопа — гелия-4, имеющего в составе два протона и два нейтрона.
Распространённость
Природная изотопная распространённость гелия-3 в атмосфере Земли составляет 0,000137 % (1,37 частей на миллион по отношению к гелию-4); в других резервуарах она может очень сильно отличаться в результате природного фракционирования и т. п.[2]. Общее количество гелия-3 в атмосфере Земли оценивается в 35 000 тонн. Оба изотопа гелия постоянно улетучиваются из атмосферы в космос, однако убыль гелия-4 на Земле восполняется за счёт альфа-распада урана, тория и их дочерних нуклидов (альфа-частица представляет собой ядро гелия-4). Тогда как гелий-3 появляется в природе исключительно при распаде космогенного трития. Бо́льшая часть гелия-3 на Земле сохранилась со времён её образования. Он растворён в мантии и постепенно поступает в атмосферу; его изотопная распространённость в мантийной магме составляет 4—10 частей на миллион частей гелия-4[3], а некоторые материалы мантийного происхождения имеют в 10—40 раз большее соотношение, чем в атмосфере[4][5]. Однако его поступление из мантии в атмосферу (через вулканы и разломы в коре) оценивается всего в несколько килограммов в год. Некоторая часть гелия-3 возникает при распаде трития, в реакциях скалывания на литии (под действием альфа-частиц и космических лучей), а также поступает из солнечного ветра. На Солнце и в атмосферах планет-гигантов первичного гелия-3 значительно больше, чем в атмосфере Земли.
В лунном реголите гелий-3 постепенно накапливался в течение миллиардов лет облучения солнечным ветром. В результате тонна лунного грунта (в тончайшем приповерхностном слое) содержит порядка 0,01 г гелия-3 (до 50 ppb[6]) и 28 г гелия-4; это изотопное соотношение (~0,043 %) значительно выше, чем в земной атмосфере[7].
Открытие
Существование гелия-3 было предположено австралийским ученым Марком Олифантом во время работы в Кембриджском университете в 1934 году. Окончательно открыли этот изотоп Луис Альварес и Роберт Корног в 1939 году.
Физические свойства
Атомная масса гелия-3 равна 3,016, в то время как у гелия-4 она равна 4,0026, ввиду чего их физические свойства весьма отличаются:
- Гелий-3 кипит при 3,19 К (гелий-4 — при 4,23 К), его критическая точка равна 3,35 К (у гелия-4 — 5,19 К).
- Плотность жидкого гелия-3 при температуре кипения и нормальном давлении равна 59 г/л, тогда как (у гелия-4 — 124,73 г/л).
- Удельная теплота испарения равна 26 Дж/моль (у гелия-4 — 82,9 Дж/моль).
- Газообразный гелий-3 при нормальных условиях имеет плотность 0,1346 г/л (у гелия-4 — 0,1785 г/л). Соответственно, объём одного грамма гелия-3 при н.у. равен 7,43 литра (у гелия-4 — 5,596 литра).
Жидкий гелий-3
Квантовая жидкость, существенно отличающаяся по свойствам от жидкого гелия-4. Жидкий гелий-3 удалось получить только в 1948 году. В 1972 году в жидком гелии-3 был обнаружен фазовый переход в сверхтекучее состояние при температурах ниже 2,6 мК и при давлении 34 атм (ранее считалось, что сверхтекучесть, как и сверхпроводимость — явления, характерные для бозе-конденсата, то есть кооперативные явления в среде с целочисленным спином объектов). За открытие сверхтекучести гелия-3 в 1996 году Д. Ошерову, Р. Ричардсону и Д. Ли была присуждена Нобелевская премия по физике.
В 2003 году Нобелевской премией по физике отмечены А. А. Абрикосов, В. Л. Гинзбург и Э. Леггет, в том числе и за создание теории сверхтекучести жидкого гелия-3[8].
Получение
В настоящее время гелий-3 не добывается из природных источников (на Земле доступны незначительные количества гелия-3, чрезвычайно трудные для добычи), а создаётся при распаде искусственно полученного трития[9].
Тритий производится отдельными государствами как компонент для термоядерного оружия путём облучения бора-10 и лития-6 в ядерных реакторах. Несколько сотен тысяч литров гелия-3 были наработаны в рамках оружейных ядерных программ, однако эти запасы уже недостаточны для существующего в США спроса. Дополнительно около 8 тыс. литров гелия-3 в год получают из распада запасов трития в США[10]. В связи с растущей нехваткой гелия-3 рассматривались такие ранее экономически нецелесообразные возможности его производства, как получение в водных ядерных реакторах, выделение из продуктов работы тяжеловодных ядерных реакторов, производство трития или гелия-3 на ускорителях частиц, экстракция естественного гелия-3 из природного газа или атмосферы[11].
Стоимость
Средняя цена гелия-3 в 2009 году составляла, по некоторым оценкам, порядка 930 USD за литр[12].
Планы добычи гелия-3 на Луне
Гелий-3 является побочным продуктом реакций, протекающих на Солнце, и в некотором количестве содержится в солнечном ветре и межпланетной среде. Попадающий в атмосферу Земли из межпланетного пространства гелий-3 быстро диссипирует обратно[13], его концентрация в атмосфере чрезвычайно низка[14]. При этом Луна, у которой нет атмосферы, сохраняет значительные количества гелия-3 в своём поверхностном слое (реголите), по отдельным оценкам — до 0,5 млн тонн[15], по другим — около 2,5 млн тонн[16].
Теоретически, при гипотетической реакции термоядерного синтеза, при которой в реакцию вступает 1 тонна гелия-3 с 0,67 тоннами дейтерия, высвобождается энергия, эквивалентная сгоранию 15 млн тонн нефти (однако на настоящий момент не изучена техническая возможность осуществления данной реакции). Следовательно, населению нашей планеты лунного ресурса гелия-3 (по максимальным оценкам) могло бы хватить примерно на пять тысячелетий[17]. Основной проблемой (если проигнорировать проблему реализуемости управляемых термоядерных реакторов с подобным горючим) остаётся реальность добычи гелия из лунного реголита. Как упомянуто выше, содержание гелия-3 в реголите составляет ~1 г на 100 т., поэтому для добычи тонны этого изотопа следует переработать на месте не менее 100 млн тонн грунта.
НАСА разрабатывала эскизные проекты гипотетических установок по переработке реголита и выделению гелия-3[18][19].
В январе 2006 года глава РКК «Энергия» Николай Севастьянов заявил, что Россия планирует создать постоянную базу на Луне и отработать транспортную схему по доставке на Землю гелия-3 уже к 2015 году (при условии достаточного финансирования), а ещё через 5 лет начать промышленную добычу изотопа[20][]. В ноябре 2018 года глава «Роскосмоса» Дмитрий Рогозин вновь поднял тему о возможном использовании гелия-3 как основы для ракетного топлива[21]; при этом, одновременно с Д. Рогозиным, академик РАН Лев Зелёный заявил о практической бесполезности добычи гелия-3[22].
В августе 2024 года китайские ученые опубликовали в Aerospace Shanghai статью, в которой предложили необычный способ транспортировки добытого He-3 на Землю. Они собираются построить на Луне метательную установку, состоящую из 50-метровой стрелы и сверхпроводящего электродвигателя, который будет раскручивать ее до достижения на конце лунной второй космической скорости. Разогнанные таким способом капсулы с изотопом будут метаться в сторону Земли. По расчетам авторов, технология удешевит доставку на 90%. Авторы считают, что развернуть ее можно за 20 лет и 130 миллиардов юаней. Вопросы добычи лунного гелия и создания управляемого синтеза статья не затрагивает[23][24].
Использование
Бо́льшая часть производимого в мире гелия-3 используется для наполнения газовых детекторов нейтронов. Остальные применения пока не выходят за пределы научных лабораторий[25].
Счётчики нейтронов
Газовые счётчики, наполненные гелием-3, используются для детектирования нейтронов. Это наиболее распространённый метод измерения нейтронного потока. В этих счётчиках происходит реакция
- n + 3He → 3H + 1H + 0,764 МэВ.
Заряженные продукты реакции — тритон и протон — регистрируются газовым счётчиком, работающим в режиме пропорционального счётчика или счётчика Гейгера—Мюллера.
Значительно возросшее после 2001 года производство нейтронных мониторов (для обнаружения незаконно перевозимых делящихся материалов и предотвращения ядерного терроризма) привело к сокращению запасов гелия-3; так, запасы, принадлежащие правительству США, с 1990 по 2001 год монотонно росли со 140 до 235 тыс. литров н.у., но к 2010 году уменьшились до 50 тыс. л н.у.[25]
Сверхнизкие температуры
Откачкой паров гелия-4 под вакуумом сложно получить температуры ниже 0,7К. Более низкие температуры достижимы посредством испарения при откачке паров гелия-3, который при этом не будет сверхтекучим. Таким образом можно вплотную приблизиться к условной границе криогенных и сверхнизких температур (0,3К). Для откачки паров также используется их адсорбция в гелии-4, проводимая в замкнутых ёмкостях, предотвращающих любую потерю гелия-3.
Охлаждение для квантовых компьютеров
Квантовые компьютеры требуют для своей работы чрезвычайно низких температур. Чем ниже температура среды, в которой находятся компоненты квантового компьютера, тем стабильней работает этот компьютер и тем меньше ошибок возникает при вычислениях. Гелий-3 является самым эффективным охладителем, позволяя снизить шумы в квантовых компьютерах в 1000 раз[26].
Рефрижератор растворения
Путём растворения жидкого гелия-3 в гелии-4 можно достигать милликельвиновых температур[27].
Медицина
Поляризованный[] гелий-3[7] (он может долго храниться) недавно начал использоваться в магнитно-резонансной томографии для получения изображения лёгких с помощью ядерного магнитного резонанса.
Гелий-3 как гипотетическое термоядерное топливо
Реакция 3Не + D → 4Не + p имеет ряд преимуществ по сравнению с наиболее достижимой в земных условиях дейтериево-тритиевой реакцией T + D → 4Не + n. К этим преимуществам относятся[28]:
- В десятки раз более низкий поток нейтронов из зоны реакции, что резко уменьшает наведённую радиоактивность и деградацию конструкционных материалов реактора;[28][29]
- Получаемые протоны, в отличие от нейтронов, легко улавливаются при помощи электрических и магнитных полей[28] и могут быть использованы для дополнительной генерации электроэнергии, например, в МГД-генераторе;
- Исходные материалы для синтеза неактивны и их хранение не требует особых мер предосторожности;
- При аварии реактора с разгерметизацией активной зоны радиоактивность выброса близка к нулю.[]
Недостатком гелий-дейтериевой реакции следует считать практическую невозможность поддержания требуемых температур[30]. При температурах менее 109 К термоядерная реакция слияния ядер дейтерия между собой протекает гораздо охотнее, и реакции между дейтерием и гелием-3 не происходит. При этом теплопотери за счет излучения быстро возрастают с температурой и горячая плазма будет остывать быстрее, чем сможет восполнять потери энергии за счет термоядерных реакций.
В искусстве
В фантастических произведениях (играх, фильмах) гелий-3 иногда выступает в качестве основного топлива и как ценный ресурс, добываемый в том числе на Луне:
- В серии игр «Mass Effect» (2007—2013) гелий-3 используется в качестве топлива для космических кораблей.
- Основой сюжета британского научно-фантастического фильма «Луна 2112» (2009) является работа горнодобывающего комплекса компании «Лунар». Комплекс обеспечивает добычу гелия-3, с помощью которого удалось остановить катастрофический энергетический кризис на Земле.
- В политической комедии «Железное небо» (2012) лунный гелий-3 стал причиной международного ядерного конфликта за право его добычи.
- В фантастической саге Иена Макдональда «Луна» (2015—2017) гелий-3 используется как топливо для термоядерных установок.
- Комедийный российский сериал «Гелий-3» (2022, СТС)[31]
- В игре «Deliver Us the Moon» (2018) действие происходит на лунной базе, добывающей гелий-3.
Литература
- Dobbs E. R. Helium Three. — Oxford University press, 2000. ISBN 0-19-850640-6
- Галимов Э. М. Если у тебя есть энергия, ты можешь извлечь всё Архивная копия от 26 декабря 2014 на Wayback Machine — Редкие земли. 2014. № 2. С. 6-12.
- Shea D. A., Morgan D. The Helium-3 Shortage: Supply, Demand, and Options for Congress Архивная копия от 24 сентября 2015 на Wayback Machine // Congressional Research Service, December 22, 2010 (англ.).
Примечания
- ↑ 1 2 3 Audi G., Wapstra A. H., Thibault C. The AME2003 atomic mass evaluation (II). Tables, graphs, and references (англ.) // Nuclear Physics A. — 2003. — Vol. 729. — P. 337—676. — doi:10.1016/j.nuclphysa.2003.11.003. — .
- ↑ 1 2 3 4 Audi G., Bersillon O., Blachot J., Wapstra A. H. The NUBASE evaluation of nuclear and decay properties // Nuclear Physics A. — 2003. — Т. 729. — С. 3—128. — doi:10.1016/j.nuclphysa.2003.11.001. — .
- ↑ Don L. Anderson, Helium-3 from the Mantle: Primordial Signal or Cosmic Dust? Архивная копия от 24 сентября 2015 на Wayback Machine // SCIENCE, Vol. 261, 1993, pp. 170—176: «Magmas from the mantle generally have 3He/4He ratios between 4⋅10−6 and 10−5; the higher values are often found at hotspots».
- ↑ Are high 3 He/4 He ratios in oceanic basalts an indicator of deep-mantle plume components? Архивная копия от 1 мая 2015 на Wayback Machine // Earth and Planetary Science Letters 208.3 (2003): 197—204. «Oceanic Island Basalt (OIB). Some OIBs, but certainly not all, are characterized by 3He/4He ratios in the range of 9 to 42 RA; where RA is the present day atmospheric 3He/4He ratio of 1,39⋅10−6 [8, 18].»
- ↑ The 3He/4He ratio of the new internal He Standard of Japan (HESJ) Архивная копия от 26 декабря 2014 на Wayback Machine // Geochemical Journal, Vol. 36, pp. 191—195, 2002 «Thus many terrestrial samples of mantle origin have 3He/4He ratios higher than the air value by about an order of magnitude».
- ↑ http://io9.com/5908499/could-helium-3-really-solve-earths-energy-problems Архивная копия от 9 декабря 2015 на Wayback Machine «Best estimates of Helium-3 content place it at 50 parts per billion in lunar soil, calling for the refining of millions of tons of lunar soil before gathering enough Helium-3 to be useful in fusion reactions on Earth.»
- ↑ 1 2 Добрый доктор гелий-3 Архивная копия от 26 декабря 2014 на Wayback Machine / Популярная Механика, № 113, март 2012 (копия Архивная копия от 22 декабря 2015 на Wayback Machine).
- ↑ Сверхтекучий 3He: ранняя история глазами теоретика Архивная копия от 29 февраля 2008 на Wayback Machine — нобелевская лекция Э. Дж. Леггетта, УФН, т. 174, № 11, 2003 г.
- ↑ Shea D. A., Morgan D. The Helium-3 Shortage: Supply, Demand, and Options for Congress Архивная копия от 24 сентября 2015 на Wayback Machine // Congressional Research Service, December 22, 2010 (англ.): "How Is Helium-3 Made? … federal government produces tritium for use in nuclear warheads. Tritium decays into helium-3 … The U.S. producer of helium-3 is the National Nuclear Security Administration of the Department of Energy (DOE). "
- ↑ Shea D. A., Morgan D. The Helium-3 Shortage: Supply, Demand, and Options for Congress Архивная копия от 24 сентября 2015 на Wayback Machine // Congressional Research Service, December 22, 2010 (англ.): «helium-3 stockpile grew from roughly 140,000 liters in 1990 to roughly 235,000 liters in 2001.17 Since 2001, however, helium-3 demand has exceeded production. By 2010, the increased demand had reduced the stockpile to roughly 50,000 liters. … decay of tritium held by the U.S. nuclear weapons program currently generates approximately 8,000 liters of new helium-3 per year.»
- ↑ Shea D. A., Morgan D. The Helium-3 Shortage: Supply, Demand, and Options for Congress Архивная копия от 24 сентября 2015 на Wayback Machine // Congressional Research Service, December 22, 2010 (англ.): "Potential additional sources of helium-3 include increased production of tritium in light-water nuclear reactors …; extraction of tritium produced as a byproduct in commercial heavy-water nuclear reactors; production of either tritium or helium-3 using particle accelerators; and extraction of naturally occurring helium-3 from natural gas or the atmosphere. "
- ↑ Survey of Critical Use of 3He for Cryogenic Purposes Архивная копия от 28 апреля 2010 на Wayback Machine // Northwestern University, 2009
- ↑ Specific Arguments — Helium Архивная копия от 22 декабря 2015 на Wayback Machine // infidels.org — SECULAR WEB LIBRARY
- ↑ [1] Архивная копия от 24 сентября 2015 на Wayback Machine // fas.org — «atmosphere contains a small quantity of helium, a fraction of which is helium-3. …The concentration of helium in the atmosphere is only about 5 parts per million»
- ↑ Колонизация Солнечной системы отменяется Архивная копия от 3 июня 2007 на Wayback Machine // 3DNews, 4 марта 2007
- ↑ THE ESTIMATION OF HELIUM-3 PROBABLE RESERVES IN LUNAR REGOLITH Архивная копия от 5 июля 2008 на Wayback Machine / Lunar and Planetary Science XXXVIII (2007), lpi.usra.edu
- ↑ Добыча гелия-3 на Луне обеспечит землян энергией на 5 тыс. лет Архивная копия от 28 января 2013 на Wayback Machine // РИА Новости, 25.07.2012
- ↑ Sviatoslavsky I.N. PROCESSES AND ENERGY COSTS FOR MINING LUNAR HELIUM-3 Архивная копия от 26 декабря 2014 на Wayback Machine // NASA, 1989
- ↑ Lunar Helium-3 and Fusion Power Архивная копия от 14 декабря 2019 на Wayback Machine, NASA, 1988
- ↑ Алина Черноиванова. «Луна в реакторе» Архивная копия от 5 ноября 2018 на Wayback Machine // Газета.ру, 26 янв 2006
- ↑ «Роскосмос» изучит возможность использования лунного грунта в 3D-печати Архивная копия от 5 ноября 2018 на Wayback Machine // «РИА Новости». 2018-11-04 — «Плюс к этому будет возможность, как говорят в Академии наук, использования гелия-3 как основы для ракетного топлива.»
- ↑ Валерий Чумаков. «Луна — наш седьмой континент» Архивная копия от 31 декабря 2018 на Wayback Machine Интервью с академиком РАН Львом Зелёным, «В мире науки» № 11, 2018 «…если человечество когда-нибудь решит задачу удержания сверхгорячей плазмы, нам уже не понадобится никакой лунный гелий-3, обойдемся бором. Так что пока с колумбовыми обещаниями у нас сложности, сильно обогатиться за счет Луны в материальном плане вряд ли получится».
- ↑ Китайские ученые предложили метать энергоресурсы с Луны на Землю . РБК (18 августа 2024).
- ↑ Chinese scientists planning rotating launch system on the moon (англ.). South China Morning Post (18 августа 2024).
- ↑ 1 2 Shea D. A., Morgan D. The Helium-3 Shortage: Supply, Demand, and Options for Congress Архивная копия от 24 сентября 2015 на Wayback Machine // Congressional Research Service, December 22, 2010 (англ.).
- ↑ New cooling technology developed for quantum computing circuits . Дата обращения: 6 июля 2023. Архивировано 6 июля 2023 года.
- ↑ 3He-4He Dilution Explanation Архивная копия от 30 октября 2016 на Wayback Machine / Berkeley (англ.)
- ↑ 1 2 3 Архивированная копия . Дата обращения: 14 декабря 2019. Архивировано 2 сентября 2019 года.
- ↑ Gerald L. Kulcinski. HELIUM-3 FUSION REACTORS – A CLEANAND SAFE SOURCE OF ENERGY IN THE21ST CENTURY (апрель 1993). Дата обращения: 14 декабря 2019. Архивировано 24 февраля 2020 года.
- ↑ The helium-3 incantation Архивная копия от 14 декабря 2019 на Wayback Machine // The Space Review
- ↑ [2] Архивная копия от 15 июня 2021 на Wayback Machine Викиновости Источник . Дата обращения: 21 марта 2021. Архивировано 13 мая 2021 года. www.kino-teatr.ru/kino/movie/ros/145667/info/