
Ве́кторное по́ле — это отображение, которое каждой точке рассматриваемого пространства ставит в соответствие вектор с началом в этой точке. Например, вектор скорости ветра в данный момент времени различен в разных точках и может быть описан векторным полем.
Опера́тор на́бла — векторный дифференциальный оператор, компоненты которого являются частными производными по координатам. Обозначается символом ∇ (набла).

Уравне́ния Ма́ксвелла — система уравнений в дифференциальной или интегральной форме, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца, задающим меру воздействия электромагнитного поля на заряженные частицы, эти уравнения образуют полную систему уравнений классической электродинамики, называемую иногда уравнениями Максвелла — Лоренца. Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее влияние не только на все области физики, непосредственно связанные с электромагнетизмом, но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму.
Диверге́нция — дифференциальный оператор, отображающий векторное поле на скалярное, который определяет, «насколько расходится входящее и исходящее из малой окрестности данной точки поле», точнее, насколько расходятся входящий и исходящий потоки.
Ро́тор, рота́ция или вихрь — векторный дифференциальный оператор над векторным полем.

Уравне́ния Навье́ — Сто́кса — система дифференциальных уравнений в частных производных, описывающая движение вязкой ньютоновской жидкости. Уравнения Навье — Стокса являются одними из важнейших в гидродинамике и применяются в математическом моделировании многих природных явлений и технических задач. Названы по имени французского физика Анри Навье и британского математика Джорджа Стокса.
Ве́кторный ана́лиз — раздел математики, распространяющий методы математического анализа на векторы, как правило в двух- или трёхмерном пространстве.
Теорема Стокса — одна из основных теорем дифференциальной геометрии и математического анализа об интегрировании дифференциальных форм, которая обобщает несколько теорем анализа. Названа в честь Дж. Г. Стокса.

Уравне́ния непреры́вности — (сильная) локальная форма законов сохранения. Ниже приведены примеры уравнений непрерывности, которые выражают одинаковую идею непрерывного изменения некоторой величины.
В векторном анализе ве́кторный потенциа́л — это векторное поле, ротор которого равен заданному векторному полю. Он аналогичен скалярному потенциалу, который определяется как скалярное поле, градиент которого равен заданному векторному полю.

Уравнение Эйлера — одно из основных уравнений гидродинамики идеальной жидкости. Названо в честь Л. Эйлера, получившего это уравнение в 1752 году. По своей сути является уравнением движения жидкости. До сих пор неизвестно, существует ли гладкое решение уравнения Эйлера в трёхмерном случае, начиная с заданного момента времени.
Циркуля́цией ве́кторного по́ля по данному замкнутому контуру Γ называется криволинейный интеграл второго рода, взятый по Γ. По определению


Зако́н электромагни́тной инду́кции Фараде́я является основным законом электродинамики, касающимся принципов работы трансформаторов, дросселей, многих видов электродвигателей и генераторов. Закон гласит:

Магнитная гидродинамика — физическая дисциплина, возникшая на пересечении гидродинамики и электродинамики сплошной среды. Предметом её изучения является динамика проводящей жидкости или газа в магнитном поле. Примерами изучаемых сред являются различного рода плазма, жидкие металлы, солёная вода.

Ве́кторный потенциа́л электромагни́тного по́ля — в электродинамике, векторный потенциал, ротор которого равен магнитной индукции:

Разрывный метод Галёркина — метод решения операторных уравнений, в основном дифференциальных уравнений. Является развитием классического метода конечных элементов (МКЭ), основанного на вариационной постановке Галёркина.
Ве́кторный опера́тор Лапла́са — это векторный дифференциальный оператор второго порядка, определённый над векторным полем и обозначаемый символом
, аналогичный скалярному оператору Лапласа. Векторный оператор Лапласа действует на векторное поле и имеет векторное значение, тогда как скалярный лапласиан действует на скалярное поле и имеет скалярное значение. При вычислении в декартовых координатах получаемое векторное поле эквивалентно векторному полю скалярного лапласиана, действующего на отдельные компоненты исходного вектора.
- Поскольку векторный и скалярный лапласианы обозначаются одним и тем же символом, большой греческой буквой дельта, но являются разными математическими объектами, в рамках данной статьи векторный лапласиан обозначается черным цветом, а скалярный лапласиан — синим.

Уравне́ние ви́хря — дифференциальное уравнение в частных производных, описывающее эволюцию в пространстве и времени вихря скорости течения жидкости или газа. Под вихрем скорости (завихренностью) понимается ротор скорости
. Уравнение вихря используется в гидродинамике, геофизической гидродинамике, астрофизической гидродинамике, в численном прогнозе погоды.

Тензор напряжений Максвелла представляет собой симметричный тензор второго порядка, используемый в классическом электромагнетизме для представления взаимодействия между электромагнитными силами и механическим импульсом. В простых случаях, таких как точечный заряд, свободно движущийся в однородном магнитном поле, легко рассчитать силы, действующие на заряд, согласно силе Лоренца. В более сложных случаях такая обычная процедура может стать непрактично сложной с уравнениями, охватывающими несколько строк. Поэтому удобно собрать многие из этих членов в тензоре напряжений Максвелла и использовать тензорную арифметику, чтобы найти ответ на поставленную задачу.