Термодинами́ческая фа́за — гомогенная часть гетерогенной системы, ограниченная поверхностью раздела. Менее строго, но более наглядно фазой называют гомогенную часть системы, отделенную от остальных частей видимой поверхностью раздела, на которой скачком меняются какие-либо характеристики фазы, например плотность, состав, оптические свойства. При этом совокупность отдельных гомогенных частей системы, обладающих одинаковыми свойствами, считается одной фазой. Каждая фаза системы характеризуется собственным уравнением состояния.
Раство́р — однородная (гомогенная) система, в состав которой входят молекулы двух или более типов, причём доля частиц каждого типа может непрерывно меняться в определённых пределах. От механической смеси раствор отличается однородностью, от химического соединения — непостоянством состава.
Сплав — макроскопически однородный металлический материал, состоящий из смеси двух или большего числа химических элементов с преобладанием металлических компонентов.
Азеотро́пная смесь — смесь двух или более жидкостей с таким составом, который не меняется при кипении, то есть составы равновесных жидкой и паровой фаз совпадают.
Адсорбция — самопроизвольный процесс увеличения концентрации растворённого вещества у поверхности раздела двух фаз вследствие нескомпенсированности сил межмолекулярного взаимодействия на разделе фаз. Адсорбция является частным случаем сорбции, процесс, обратный адсорбции — десорбция.
Тройна́я то́чка в однокомпонентной системе — точка схождения кривых двухфазных равновесий на плоской P—T-фазовой диаграмме, соответствующая устойчивому равновесию трёх фаз. Тройная точка нонвариантна, т. е. не допускает изменения ни одного из характеризующих её параметров состояния — ни температуры, ни давления. Индивидуальные вещества могут иметь несколько стабильных кристаллических фаз и вследствие этого несколько тройных точек. В системе, способной к образованию N фаз, число возможных тройных точек равно . Например, для серы известны четыре фазы — две твёрдые, жидкая и газообразная — и четыре тройные точки, одна из которых метастабильная.
Пра́вило фаз — соотношение, связывающее число компонентов, фаз и термодинамических степеней свободы в равновесной термодинамической системе. Роль правила фаз особенно велика при рассмотрении гетерогенных равновесий в многофазных многокомпонентных системах.
Равнове́сие фаз в термодинамике — состояние, при котором фазы в термодинамической системе находятся в состоянии теплового, механического и химического равновесия.
Пар — газообразное состояние вещества в условиях, когда газовая фаза может находиться в равновесии с жидкой или твёрдой фазами того же вещества, то есть при температурах ниже критической температуры вещества. Процесс возникновения пара из жидкой (твёрдой) фазы называется «парообразованием». Обратный процесс называется конденсация.
Критическая точка фазового равновесия — точка на диаграмме состояния веществ, соответствующая критическому состоянию, то есть конечная точка кривой сосуществования фаз, в котором две фазы, находящиеся в термодинамическом равновесии, становятся тождественными по своим свойствам. В частности, с приближением к критическому состоянию различия в плотности, составе и других свойствах сосуществующих фаз, а также теплота фазового перехода и межфазное поверхностное натяжение уменьшаются, а в критической точке равны нулю. В окрестности критической точки наблюдаются критические явления.
Раствори́мость — способность вещества образовывать с другими веществами однородные системы — растворы, в которых вещество находится в виде отдельных атомов, ионов, молекул или частиц. Растворимость выражается концентрацией растворённого вещества в его насыщенном растворе либо в процентах, либо в весовых или объёмных единицах, отнесённых к 100 г или 100 см³ (мл) растворителя. Растворимость газов в жидкости зависит от температуры и давления. Растворимость жидких и твёрдых веществ — практически только от температуры. Все вещества в той или иной степени растворимы в растворителях. В случае, когда растворимость слишком мала для измерения, говорят, что вещество нерастворимо.
Диспе́рсная систе́ма — образования из фаз (тел), которые практически не смешиваются и не реагируют друг с другом химически. В типичном случае двухфазной системы первое из веществ мелко распределено во втором. Если фаз несколько, их можно отделить друг от друга физическим способом.
Термодинами́ческая систе́ма — физическое тело (совокупность тел), способное (способных) обмениваться с другими телами (между собой) энергией и (или) веществом; выделяемая (реально или мысленно) для изучения макроскопическая физическая система, состоящая из большого числа частиц и не требующая для своего описания привлечения микроскопических характеристик отдельных частиц, «часть Вселенной, которую мы выделяем для исследования». Единицей измерения числа частиц в термодинамической системе обычно служит число Авогадро (примерно 6·1023 частиц на моль вещества), дающее представление, о величинах какого порядка идёт речь. Ограничения на природу материальных частиц, образующих термодинамическую систему, не накладываются: это могут быть атомы, молекулы, электроны, ионы, фотоны и т. д.. Любой земной объект, видимый невооружённым глазом или с помощью оптических приборов (микроскопы, зрительные трубы и т. п.), можно отнести к термодинамическим системам: «Термодинамика занимается изучением макроскопических систем, пространственные размеры которых и время существования достаточны для проведения нормальных процессов измерения». Условно к макроскопическим системам относят объекты с размерами от 10−7 м (100 нм) до 1012 м.
Алексей Васильевич Сторо́нкин (1916—1994) — советский физикохимик, основатель кафедры теории растворов химического факультета ЛГУ. Создатель школы термодинамики. Автор фундаментального труда «Термодинамика гетерогенных систем». Член ВКП(б) с 1945 года.
Смесь — система, состоящая из двух или более веществ. Однородную смесь называют раствором, а неоднородную — механической смесью. Любую смесь можно разделить на компоненты физическими методами; изменения состава компонентов смеси при этом не происходит.
Термодинамическая функция состояния — это физическая величина, рассматриваемая как функция нескольких независимых переменных состояния. Причём набор независимых переменных выбирается из требования необходимости и достаточности для полного описания мгновенного состояния однородной термодинамической системы. Функции состояния заданы для текущего состояния равновесия системы. Их применяют для термодинамического описания сплошных сред — газов, жидкостей, твёрдых веществ, включая кристаллы, эмульсии и чернотельное излучение. Функции состояния не зависят от пути термодинамического процесса, по которому система достигла своего нынешнего состояния. Термодинамическая функция состояния описывает состояние равновесия системы и, следовательно, также описывает тип системы. Например, функция состояния может описывать газ, жидкость или твердую фазу; гетерогенную или гомогенную смесь; и количество энергии, необходимое для создания таких систем или перевода их в другое состояние равновесия. Следует уточнить, что если равновесие наступает не во всём объёме системы, а только в её бесконечно малой части, то термодинамические функции состояния также описывают эти малые части, а изменение термодинамических переменных состояния определены как функции времени и координаты, которые меняются благодаря потокам в среде, стремящихся привести в равновесное состояние всю систему. Понятие о локальности термодинамического равновесия позволяет использовать термодинамические функции состояния в неравновесной термодинамике.
Пересы́щенный пар — пар, давление которого превышает давление насыщенного пара при данной температуре. Может быть получен путём увеличения давления пара в объёме, свободном от центров конденсации. Другой способ получения — охлаждение насыщенного пара при тех же условиях. В связи с последним способом получения насыщенного пара применительно к нему используется также наименование переохлаждённый пар. Кроме того, иногда в литературе встречается термин перенасыщенный пар.
Компоненты — независимые составляющие вещества системы, то есть индивидуальные химические вещества, которые необходимы и достаточны для составления данной термодинамической системы, допускают выделение из системы и независимое существование вне её. Изменения масс компонентов выражают все возможные изменения в химическом составе системы, а масса каждого вещества, выбранного в качестве компонента, не зависит от масс других компонентов.
Наталия Александровна Смирнова — советский и российский химик, заведующая кафедрой физической химии СПбГУ, лауреат Государственной премии СССР, заслуженный работник высшей школы РФ, член-корреспондент Российской академии наук (1997).