Отрабо́тавшее я́дерное то́пливо, облучённое я́дерное то́пливо (ОЯТ) — извлечённые из активной зоны тепловыделяющие элементы (ТВЭЛ) или их группы, тепловыделяющие сборки ядерных реакторов атомных электростанций и других установок . Ядерное топливо относят к отработавшему, если оно более неспособно эффективно поддерживать цепную реакцию.
Гомоге́нный я́дерный реа́ктор — ядерный реактор, активная зона которого представляет собой гомогенную смесь ядерного горючего с замедлителем.
Тепловыделя́ющий элеме́нт (ТВЭЛ) — главный конструктивный элемент активной зоны гетерогенного ядерного реактора, содержащий ядерное топливо. В ТВЭЛах происходит деление тяжёлых ядер 235U или 239Pu, сопровождающееся выделением тепловой энергии, которая затем передаётся теплоносителю. ТВЭЛ должен обеспечить отвод тепла от топлива к теплоносителю и препятствовать распространению радиоактивных продуктов из топлива в теплоноситель.
Я́дерный (а́томный) реа́ктор — устройство, предназначенное для организации управляемой, самоподдерживающейся цепной реакции деления, сопровождающейся выделением энергии.
Акти́вная зо́на ядерного реактора — пространство, в котором происходит контролируемая цепная реакция деления ядер тяжёлых изотопов урана или плутония. В ходе цепной реакции выделяется энергия в виде нейтронного и γ-излучения, β-распада, кинетической энергии осколков деления.
Я́дерное то́пливо — материалы, которые используются в ядерных реакторах для осуществления управляемой цепной ядерной реакции деления. Ядерное топливо принципиально отличается от других видов топлива, используемых человечеством, оно чрезвычайно энергоёмко, но и весьма опасно для человека, что накладывает множество ограничений на его использование из соображений безопасности. По этой и многим другим причинам ядерное топливо гораздо сложнее в применении, чем любой вид органического топлива и требует множества специальных технических и организационных мер при его использовании, а также высокую квалификацию персонала, имеющего с ним дело.
Реа́ктор на тепловы́х нейтро́нах — ядерный реактор, использующий для поддержания цепной ядерной реакции нейтроны тепловой части спектра энергии — «теплового спектра». Использование нейтронов теплового спектра выгодно потому, что сечение взаимодействия ядер 235U с нейтронами, участвующими в цепной реакции, растёт по мере снижения энергии нейтронов, а ядер 238U остаётся при низких энергиях постоянным. В результате, самоподдерживающаяся реакция при использовании природного урана, в котором делящегося изотопа 235U всего 0,7 %, невозможна на быстрых нейтронах и возможна на медленных (тепловых).
Водо-водяной ядерный реактор — реактор, использующий в качестве замедлителя и теплоносителя обычную (лёгкую) воду. Наиболее распространённый в мире тип водо-водяных реакторов — с водой под давлением. В России производятся реакторы ВВЭР, в других странах общее название таких реакторов — PWR. Другой тип водо-водяных реакторов — «кипящие».
Кипящий водо-водяной реактор — тип корпусного водо-водяного ядерного реактора, в котором пар генерируется непосредственно в активной зоне и направляется в турбину.
Графи́то-га́зовый я́дерный реа́ктор (ГГР) — корпусной ядерный реактор, в котором замедлителем служит графит, теплоносителем — газ. По сравнению с ВВР и ГВР, реакторы с газовым теплоносителем наиболее безопасны. Это объясняется тем, что газ практически не поглощает нейтроны, поэтому изменение содержания газа в реакторе не влияет на реактивность.
Коэффициент использования тепловых нейтронов θ — параметр цепной ядерной реакции, показывающий, какая доля тепловых нейтронов поглощается ядерным горючим.
Вероятность избежания резонансного захвата φ — вероятность достижения быстрым нейтроном тепловой энергии. Данная величина представляет собой отношение числа быстрых нейтронов, избежавших захвата во время замедления к числу всех быстрых нейтронов. φ<1.
Коэффициент размножения на быстрых нейтронах μ — показатель, учитывающий влияние деления ядер 238U быстрыми нейтронами на ход цепной реакции в реакторе на тепловых нейтронах.
Кана́льный я́дерный реа́ктор — ядерный реактор, активная зона которого представляет собой набор т. н. технологических каналов, расположенных в массе замедлителя. Каждый канал представляет собой герметичную конструкцию, в которой заключено либо ядерное топливо, либо системы управления и защиты, а также каналы для прокачки теплоносителя. Технологические каналы не зависят друг от друга и допускают замену топлива без остановки реактора.
CANDU — тяжеловодный водо-водяной ядерный реактор производства Канады. В качестве замедлителя в CANDU используется тяжёлая вода, это позволяет использовать в качестве топлива обычный природный уран. В отличие от большинства водо-водяных реакторов, CANDU — канальный реактор, это позволяет заменять использованное топливо свежим, не останавливая реактор. Теплоносителем первого контура может быть как тяжёлая, так и обычная вода.
Тяжелово́дный я́дерный реа́ктор (англ. Pressurised Heavy Water Reactor, PHWR) — ядерный реактор, который в качестве теплоносителя и замедлителя использует D2O — тяжёлую воду. Так как дейтерий имеет меньшее сечение поглощения нейтронов, чем лёгкий водород, такие реакторы имеют улучшенный нейтронный баланс (то есть для них требуется менее обогащённый уран), что позволяет использовать в качестве топлива природный уран в энергетических реакторах или использовать «лишние» нейтроны для наработки изотопов.
РД-0410 — первый и единственный советский ядерный ракетный двигатель. Был разработан в конструкторском бюро «Химавтоматика», Воронеж.
Ядерный топливный цикл — это вся последовательность повторяющихся производственных процессов, начиная от добычи топлива и заканчивая удалением радиоактивных отходов. В зависимости от вида ядерного топлива и конкретных условий, ядерные топливные циклы могут различаться в деталях, но их общая принципиальная схема сохраняется.
Список включает все атомные электростанции, в состав которых входят энергоблоки с реакторами РБМК — действующими, закончившими работу, а также теми, чьё строительство было остановлено. Список разбит по статусу станций и странам-владельцам, по алфавиту.
ИР-100 — исследовательский ядерный реактор, построенный и введенный в эксплуатацию в Севастопольском высшем военно-морском инженерном училище в 1967 году, готовившим специалистов для атомного подводного флота. Реактор ИР-100 используется для проведения научно-исследовательских и учебных работ в области молекулярной и ядерной физики, радиационной химии, для производства радиоактивных изотопов, приборов и оборудования, облученных в полях гамма-квантов, а также для подготовки специалистов по эксплуатации ядерных реакторов.