
Фотоси́нтез — сложный химический процесс преобразования энергии видимого света в энергию химических связей органических веществ при участии фотосинтетических пигментов.
Оксидоредукта́зы (КФ1) — отдельный класс ферментов, катализирующих лежащие в основе биологического окисления реакции, сопровождающиеся переносом электронов с одной молекулы на другую.
Дыхательная цепь переноса электронов, также электрон-транспортная цепь (сокр. ЭТЦ, англ. ETC, Electron transport chain) — система трансмембранных белков и переносчиков электронов, необходимых для поддержания энергетического баланса. ЭТЦ поддерживает баланс за счёт переноса электронов и протонов из НАД∙Н и ФАДН2 в акцептор электронов. В случае аэробного дыхания акцептором может быть молекулярный кислород (О2). В случае анаэробного дыхания акцептором могут быть NO3−, NO2−, Fe3+, фумарат, диметилсульфоксид, сера, SO42−, CO2 и т. д. ЭТЦ у прокариот локализована в ЦПМ, у эукариот — на внутренней мембране митохондрий. Переносчики электронов расположены в порядке уменьшения сродства к электрону, то есть по своему окислительно-восстановительному потенциалу, где у акцептора самое сильное сродство к электрону. Поэтому транспорт электрона на всём протяжении цепи протекает самопроизвольно с выделением энергии. Выделение энергии в межмембранное пространство при переносе электронов происходит ступенчато, в виде протона (H+). Протоны из межмембранного пространства попадают в протонную помпу, где наводят протонный потенциал. Протонный потенциал преобразуется АТФ-синтазой в энергию химических связей АТФ. Сопряжённая работа ЭТЦ и АТФ-синтазы носит название окислительного фосфорилирования.
Нитрогеназа — комплекс ферментов (мультифермент), осуществляющий процесс фиксации атмосферного азота. Широко распространён у бактерий и архей, в то время как все эукариоты его лишены.
Анаэробное дыхание — это биохимический процесс окисления органических субстратов или молекулярного водорода с использованием в дыхательной ЭТЦ в качестве конечного акцептора электронов вместо O2 других окислителей неорганической или органической природы. Как и в случае аэробного дыхания, выделяющаяся в ходе реакции свободная энергия запасается в виде трансмембранного протонного потенциала, использующегося АТФ-синтазой для синтеза АТФ.
Метаногенез, биосинтез метана — процесс образования метана анаэробными археями, сопряжённый с получением ими энергии. Существует три типа метаногенеза:
- Восстановление одноуглеродных соединений с помощью молекулярного водорода или двух- и более углеродных спиртов.
- Диспропорционирование одноуглеродных соединений.
- Диспропорционирование ацетата.

Окисли́тельное фосфорили́рование — метаболический путь, при котором энергия, образовавшаяся при окислении питательных веществ, запасается в митохондриях клеток в виде АТФ. Хотя различные формы жизни на Земле используют разные питательные вещества, АТФ является универсальным соединением, в котором запасается энергия, необходимая для других метаболических процессов. Почти все аэробные организмы осуществляют окислительное фосфорилирование. Вероятно, широкому распространению этого метаболического пути способствовала его высокая энергетическая эффективность по сравнению с анаэробным брожением.

Сульфатредуцирующие бактерии представляют собой группу бактерий, характеризующуюся способностью окислять сероводород и отлагать в своём теле крупинки серы. Признак этой группы, как видно из сказанного, чисто физиологический, морфологических же признаков эта группа не имеет. Известны учёным серные бактерии уже давно. Ф. Кон первый изучал их физиологию, и так как серные бактерии всегда были находимы в тех местах, где наблюдалось выделение сероводорода, то Кон пришёл к заключению, что образование сероводорода находится в зависимости от жизнедеятельности этих бактерий, разрушающих различные соединения, заключающие в себе серу, и выделяющих сероводород. В этом своём заключении он опирается на наблюдения Лотара Мейера, который заметил, что вода Линдекских минеральных источников с серными бактериями — «водорослями», как он думал — после четырёхмесячного стояния заключает гораздо больше сероводорода, чем без «водорослей», и что «водоросли» восстанавливают, по-видимому, сернокислые соли в сероводород. Наблюдения над минеральными источниками в Иоганисбаде показали, далее, Кону, что там, где нет серных бактерий (Beggiatoa), там нет и сероводорода, и наоборот; кроме того, исследуя материал, присланный ему с берегов Дании Вормигом из мест, где замечалось выделение сероводорода, Кон нашёл много спирилл и монад с отложением серы внутри их тела, что ещё более укрепило его во взгляде на способность многих микроорганизмов выделять сероводород. Гоппе-Зейлер первый усомнился в справедливости заключений Кона, а Виноградский блестяще доказал ошибочность взглядов Кона; взгляд Виноградского считается теперь общепризнанным. По его мнению, серные бактерии не имеют никакого отношения к образованию сероводорода и восстановлению сульфатов, отложение же серы внутри тела бактерий Виноградский принимает как следствие окисления находящегося в воде сероводорода бактериями. Шаблон:Биофото Для получения серных бактерий в культурах Виноградский разрезал на мелкие куски свежевыкопанное корневище водяного растения — лучше всего для этой цели ему служило корневище сусака — и клал их в высокий сосуд, в который наливал колодезной воды с прибавкой небольшого количества гипса. Уже по прошествии 5—6 дней вода сосуда начинала пахнуть сероводородом, выделение его понемногу увеличивалось, но серных бактерий заметно ещё не было. Только через 4 недели можно, наконец, заметить появление нитей Beggiatoa, а месяца через 2 стенки сосуда вблизи поверхности воды оказывались уже вполне ими покрыты. Если кусочки Butomus umbellatus перед тем, как бросить в воду, подержать некоторое время в кипящей воде, то хотя сероводород и образуется потом в сосуде с гипсом, но Beggiatoa не появляется. Таким образом Виноградский мог заключить, что не Beggiatoa образует сероводород, но газ этот появляется помимо серных бактерий. Сера отлагается в теле бактерий только тогда, когда бактерии развиваются в воде, заключающей сероводород, и исчезает уже по прошествии 24 часов, когда бактерии переносят в ключевую или кипячёную воду. В случае недостатка сероводорода в воде бактерии окисляют находящуюся в их клетках серу до серной кислоты, которая образует с углекислой известью окружающей воды гипс. Схематически процессы, происходящие при этом, можно представить в виде следующих формул:

.
Ферредокси́ны — группа небольших растворимых белков, содержащих железосерные кластеры и являющихся подвижными переносчиками электронов в ряде метаболических процессов. Обычно они переносят один или два электрона за счёт изменения окисленности атомов железа.

Фотосисте́ма I, или пластоциани́н-ферредокси́н-оксидоредукта́за — второй функциональный комплекс электрон-транспортной цепи (ЭТЦ) хлоропластов. Он принимает электрон от пластоцианина и, поглощая световую энергию, формирует сильный восстановитель П700, способный через цепь переносчиков электронов осуществить восстановление НАДФ+. Таким образом, при участии ФСI синтезируется источник электронов (НАДФН) для последующих реакций восстановления углерода в хлоропластах в цикле Кальвина. Кроме того, ФСI может осуществлять циклический транспорт электронов, сопряжённый с синтезом АТФ, обеспечивая дополнительный синтез АТФ в хлоропластах.

Реакционный центр — комплекс белков, пигментов и других кофакторов, взаимодействие которых обеспечивает реакцию превращения энергии света в химическую при фотосинтезе. Реакционный центр получает энергию или через непосредственное возбуждение одной из своих молекул или через перенос энергии от светособирающих комплексов, что даёт начало цепочке химических реакций, происходящей на связанных белками кофакторах. Эти кофакторы — светопоглощающие молекулы такие как хлорофилл, феофитин и хиноны. Энергия фотона используется для поднятия электрона на более высокий энергетический уровень. Запасённая таким образом свободная энергия идёт на восстановление цепочки акцепторов электрона с более высоким редокс-потенциалом.

Цитохро́м-b6f-ко́мплекс, или пластохинолпластоцианинредукта́за — мультибелковый комплекс, который осуществляет окисление пластохинолов и восстановление белка пластоцианина, обеспечивая, таким образом, транспорт электронов между реакционными центрами фотосистемы I (ФСI) и фотосистемы II (ФСII). Он восстанавливает маленький водорастворимый белок пластоцианин, который переносит электрон к ФСII. Аналогичную реакцию катализирует цитохром-bc1-комплекс электрон-транспортной цепи митохондрий. Цитохром-b6f-комплекс присутствует в тилакоидной мембране хлоропластов растений, водорослей и цианобактерий. Он функционально объединяет две фотосистемы в единую цепь переноса электронов от воды к НАДФ+, то есть является участником нециклического потока электронов. Кроме того, цитохромный комплекс вовлечён в циклический транспорт электронов, осуществляемый фотосистемой I.

НАДН-дегидрогена́зный ко́мплекс, также называемый ко́мплекс I или НАДН-убихино́н-оксидоредукта́за — первый мультибелковый комплекс дыхательной цепи переноса электронов. Множество копий комплекса расположены в мембранах прокариотических организмов, способных к кислородному дыханию и внутренних мембранах митохондрий эукариотических клеток. По отношению к белкам человека комплекс I часто называют НАДН-дегидрогеназой.

Фотофосфорили́рование — процесс синтеза АТФ из АДФ за счёт энергии света. Как и в случае окислительного фосфорилирования, энергия света расходуется на создание протонного градиента на мембране тилакоидов или клеточной мембране бактерии, который затем используется АТФ-синтазой. Фотофосфорилирование — очень древняя форма фотосинтеза, которая есть у всех фототрофных эукариот, бактерий и архей. Различают два типа фосфорилирования — циклическое, сопряжённое с циклическим потоком электронов в электрон-транспортной цепи, и нециклическое, сопряжённое с прямым потоком электронов от H2O к НАДФ+ в случае эукариот или другого донора электрона в случае бактерий, например, H2S. Как разновидность нециклического типа выделяют псевдоциклическое фотофосфорилирование, при котором акцептором электронов служит кислород.
Ферредоксин-НАДФ+-редуктаза, сокращенно ФНР, фермент из класса оксидоредуктаз, катализирующий реакцию восстановления НАДФ+, используя в качестве донора электронов ферредоксин.
Карбоксидобактерии — группа аэробных хемолитоавтотрофных бактерий, получающих энергию при окислении угарного газа (СО), объединяемых на основании физиологических особенностей. Не являются таксономической группой. Включают α, β, и γ-протеобактерии, фирмикутов, и актинобактерий. Большинство известных карбоксидобактерий являются грамотрицательными бактериями.
Ацетогенез — биохимический процесс, в результате которого из диоксида углерода и донора электронов образуется уксусная кислота (ацетат). Данный процесс используют анаэробные организмы в последовательности биохимических реакций восстановительного ацетил-КoA пути. Группа различных видов бактерий, способных к ацетогенезу, называется ацетогенами. Некоторые ацетогены способны синтезировать ацетат автотрофно из диоксида углерода и водорода. Суммарная реакция автотрофного синтеза ацетата:
ΔG°'= -95 кДж/моль

Бифурка́ция электро́нов — это механизм разделения электронов в окислительно-восстановительной реакции: пара электронов соединения-донора разделяется на два отдельных электрона, которые переносятся на два одноэлектронных акцептора, при этом один электрон переносится на акцептор с более низким электрохимическим потенциалом за счёт энергии другого электрона, который переносится на акцептор с более высоким потенциалом, чем у исходного соединения.
Сульфа́тное дыха́ние, или диссимиляцио́нное восстановле́ние сульфа́та, — анаэробное дыхание, при котором конечным акцептором электронов (окислителем) служит сульфат (SO42−). В качестве донора электронов в сульфатном дыхании обычно выступают молекулярный водород (H2) и различные органические вещества (алифатические и ароматические углеводороды, спирты, углеводы и карбоновые кислоты), в редких случаях металлическое железо. Данный метаболический путь распространён среди бактерий и архей (как правило, анаэробных), которые в связи с этой чертой называют сульфатредукторами.

Аденозин-5′-фосфосульфат (АФС, APS) — производное аденозинмонофосфата, сульфатированное по 5′-концу. Промежуточный продукт метаболизма сульфатов (SO42−) и сульфитов (SO32−).