Комбинато́рика — раздел математики, посвящённый решению задач, связанных с выбором и расположением элементов некоторого множества в соответствии с заданными правилами. Каждое такое правило определяет некоторую выборку из элементов исходного множества, которая называется комбинаторной конфигурацией. Простейшими примерами комбинаторных конфигураций являются перестановки, сочетания и размещения.
Правильный многогранник или плато́ново тело — это выпуклый многогранник, грани которого являются равными правильными многоугольниками, обладающий пространственной симметрией следующего типа: все многогранные углы при его вершинах правильные и равны друг другу.
Теорема Хелли — классический результат комбинаторной геометрии и выпуклого анализа. Теорема даёт условие на семейство выпуклых множеств, гарантирующее то, что это семейство имеет непустое пересечение.
Теорема Брунна — Минковского — классическая теорема выпуклой геометрии:
Откры́тые (нерешённые) математи́ческие пробле́мы — задачи, которые рассматривались математиками, но до сих пор не решены. Часто имеют форму гипотез, которые предположительно верны, но нуждаются в доказательстве.
Изопериметри́ческое нера́венство — геометрическое неравенство, связывающее периметр замкнутой кривой на плоскости и площадь участка плоскости, ограниченной этой кривой. Этот термин также используется для различных обобщений данного неравенства.
Гипотеза Хадвигера — одна из неразрешённых гипотез теории графов. Она формулируется следующим образом: всякий -хроматический граф стягиваем к полному графу на вершинах.
Теория чисел — это раздел математики, занимающийся преимущественно изучением натуральных и целых чисел и их свойств, часто с привлечением методов математического анализа и других разделов математики. Теория чисел содержит множество проблем, попытки решения которых предпринимались математиками в течение десятков, а иногда даже сотен лет, но которые пока так и остаются открытыми. Ниже приведены некоторые из наиболее известных нерешённых проблем.
Выпуклый многогранник — многогранник, являющийся выпуклым множеством. Это основное понятие в задачах линейного программирования.
В данном списке приводятся математические утверждения и объекты, названные именем венгерского математика Пала Эрдёша.
Задача Нелсона — Эрдёша — Хадвигера — задача комбинаторной геометрии, первоначально поставленная как задача о раскраске или хроматическом числе евклидова пространства.
Комбинаторная или дискретная геометрия — раздел геометрии, в котором изучаются комбинаторные свойства геометрических объектов и связанные с ними конструкции. В комбинаторной геометрии рассматривают конечные и бесконечные дискретные множества или структуры базовых однотипных геометрических объектов и ставят вопросы, связанные со свойствами различных геометрических конструкций из этих объектов или на этих структурах. Проблемы комбинаторной геометрии простираются от конкретных «предметно»-комбинаторных вопросов — замощения, упаковка кругов на плоскости, формула Пика — до вопросов общих и глубоких, таких как гипотеза Борсука, проблема Нелсона — Эрдёша — Хадвигера.
Задача Шепарда — вопрос выпуклой геометрии о сравнении объёмов двух симметричных выпуклых тел при условии, что в любом направлении площадь проекции первого не превосходит площади проекции второго.
Многогранники Ханнера — класс выпуклых многогранников, которые можно получить рекурсивно из отрезка при помощи двух операций: взятие прямого произведения и переход к двойственному многограннику.
Задача о покрытии полосками — классическая задача комбинаторной геометрии. В простейшем случае звучит так:
- Доказать, что круг диаметра нельзя покрыть полосками с общей шириной меньше .
Многогранник Биркгофа Bn, который также называется многогранником назначений, многогранником дважды стохастических матриц или многогранником совершенных паросочетаний полного двудольного графа , это выпуклый многогранник в RN, точками которого являются дважды стохастические матрицы, то есть n × n матрицы, элементами которых служат неотрицательные вещественные числа и сумма строк и столбцов этих матриц равна 1.
Гипотеза Албертсона — недоказанная связь между числом пересечением и хроматическим числом графа. Гипотеза носит имя Михаила О. Албертсона, профессора колледжа Смит, который сформулировал утверждение в качестве гипотезы в 2007. Гипотеза является одной из многих гипотез в теории раскраски графов. Гипотеза утверждает, что среди всех графов, требующих n цветов, полный граф Kn находится среди графов, имеющих наименьшее число пересечений. Эквивалентно, если граф может быть нарисован с меньшим числом пересечений, чем у Kn, тогда, согласно гипотезе, его можно раскрасить в меньше чем n цветов.
Нерешённая гипотеза Гуго Хадвигера утверждает, что любой симплекс может быть разбит на ортосхемы, причём число ортосхем ограничено сверху функцией от размерности симплекса. Если гипотеза верна, то верно и более общее утверждение, что любой выпуклый многогранник можно разбить на ортосхемы.
«Математическая библиотечка» — серия из 8 книг издаваемая с 1962 по 1974 год. Книги рассчитаны на любителей математики, не имеющих специального математического образования.