Це́лые чи́сла — расширение множества натуральных чисел, получаемое добавлением к нему нуля и отрицательных чисел. Необходимость рассмотрения целых чисел продиктована невозможностью в общем случае вычесть из одного натурального числа другое — можно вычитать только меньшее число из большего. Введение нуля и отрицательных чисел делает вычитание такой же полноценной операцией, как сложение.
Кольцо́ в общей алгебре — алгебраическая структура, в которой определены операция обратимого сложения и операция умножения, по свойствам похожие на соответствующие операции над числами. Простейшими примерами колец являются совокупности чисел, совокупности числовых функций, определённых на заданном множестве. Во всех случаях имеется множество, похожее на совокупности чисел в том смысле, что его элементы можно складывать и умножать, причём эти операции ведут себя естественным образом.
Непрерывная дробь — это конечное или бесконечное математическое выражение вида
Гру́ппа — множество, на котором определена ассоциативная бинарная операция, причём для этой операции имеется нейтральный элемент, и каждый элемент множества имеет обратный. Раздел общей алгебры, занимающийся группами, называется теорией групп.
Египетская дробь — в математике сумма нескольких попарно различных дробей вида . Другими словами, каждая дробь суммы имеет числитель, равный единице, и знаменатель, представляющий собой натуральное число.
Пал Э́рдёш — венгерский математик, один из наиболее продуктивных математиков XX века. Работал в самых разных областях современной математики: комбинаторика, теория графов, теория чисел, математический анализ, теория приближений, теория множеств и теория вероятностей. Лауреат множества математических наград, включая премию Вольфа (1983/1984). Основатель премии Эрдёша.
Теорема Рамсея — теорема комбинаторики о разбиениях множеств, сформулированная и доказанная английским математиком Фрэнком Рамсеем в 1930 году. Встречается в литературе в разных формулировках. Эта теорема положила начало теории Рамсея.
Теория Рамсея — раздел комбинаторики, изучающий условия, при которых в произвольно формируемых математических объектах обязан появиться некоторый порядок.
В математике вычислимое число — это число, которое может быть вычислено с любой заданной точностью с помощью алгоритма.
Теория чисел — это раздел математики, занимающийся преимущественно изучением натуральных и целых чисел и их свойств, часто с привлечением методов математического анализа и других разделов математики. Теория чисел содержит множество проблем, попытки решения которых предпринимались математиками в течение десятков, а иногда даже сотен лет, но которые пока так и остаются открытыми. Ниже приведены некоторые из наиболее известных нерешённых проблем.
В данном списке приводятся математические утверждения и объекты, названные именем венгерского математика Пала Эрдёша.
Доля единицы — это рациональное число в виде дроби, числитель которой равен единице, а знаменатель — положительное целое число. Доля единицы, таким образом, является обратным числом положительного целого числа, 1/n. Примеры — 1/1, 1/2, 1/3, 1/4 и т. д.
Теория диофантовых приближений — раздел теории чисел, изучающий приближения вещественных чисел рациональными; назван именем Диофанта Александрийского.
Аддитивная комбинаторика — междисциплинарная область математики, изучающая взаимозависимость различных количественных интерпретаций понятия структурированности подмножества группы, а также аналогичные свойства производных от множества структур, использующихся при этих интерпретациях. Кроме того, аддитивная комбинаторика изучает структурированность в различных смыслах некоторых специфических множеств или классов множеств.
Практичное число или панаритмичное число — это положительное целое число n, такое что все меньшие положительные целые числа могут быть представлены в виде суммы различных делителей числа n. Например, 12 является практичным числом, поскольку все числа от 1 до 11 можно представить в виде суммы делителей 1, 2, 3, 4 и 6 этого числа — кроме самих делителей, мы имеем 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1 и 11 = 6 + 3 + 2.
Теорема ван дер Вардена — классический результат комбинаторной теории чисел об одноцветных арифметических прогрессиях в раскрасках натуральных чисел. Теорема является типичным утверждением теории Рамсея, а также предтечей теоремы Семереди, которая положила начало большой ветви аддитивной комбинаторики.