Топологи́ческое простра́нство — множество, для элементов которого определено, какие из них близки друг к другу. Является центральным понятием общей топологии.
Ква́нтовая тео́рия по́ля (КТП) — раздел физики, изучающий поведение квантовых систем с бесконечно большим числом степеней свободы — квантовых полей; является теоретической основой описания микрочастиц, их взаимодействий и превращений. На языке КТП основываются физика высоких энергий и физика элементарных частиц, её математический аппарат используется в физике конденсированного состояния. КТП в виде Стандартной модели в настоящее время является единственной экспериментально подтверждённой теорией, способной описывать и предсказывать результаты экспериментов при достижимых в современных ускорителях высоких энергиях.
Квантовое состояние — любое возможное состояние, в котором может находиться квантовая система. Чистое квантовое состояние может быть описано:
- В волновой механике — волновой функцией,
- В матричной механике — вектором состояния, или полным набором квантовых чисел для определённой системы.
Тео́рия катего́рий — раздел математики, изучающий свойства отношений между математическими объектами, не зависящие от внутренней структуры объектов.
Функтор — особый тип отображений между категориями. Его можно понимать как отображение, сохраняющее структуру. Функторы между малыми категориями являются морфизмами в категории малых категорий. Совокупность всех категорий не является категорией в обычном смысле, так как совокупность её объектов не является классом. Один из способов преодолеть подобные теоретико-множественные трудности — добавление в ZFC независимой от неё аксиомы о существовании недостижимых кардиналов.
Джон Карлос Баэс — американский физик и математик. Профессор Калифорнийского университета в Риверсайде. Один из теоретиков петлевой квантовой гравитации. Совместно с Дж. Дуланом сформулировал гипотезу кобордизма. Известен также как один из популярных научных блогеров. Двоюродный брат певицы Джоан Баэз.
Схе́ма — математическая абстракция, позволяющая связать алгебраическую геометрию, коммутативную алгебру и дифференциальную геометрию и переносить идеи из одной области в другую. В первую очередь понятие схемы позволяет перенести геометрическую интуицию и геометрические конструкции, такие как тензорные поля, расслоения и дифференциалы, в теорию колец. Исторически теория схем возникла с целью обобщения и упрощения классической алгебраической геометрии итальянской школы XIX века, занимавшейся исследованием полиномиальных уравнений.
Сэр Саймон Керван До́нальдсон — британский математик, лауреат международных премий. Знаменит работами в области топологии гладких (дифференцируемых) 4-мерных многообразий.
Обогащённая категория в теории категорий — обобщение понятия категории, конструкция, в которой множество морфизмов между двумя объектами заменена на объект произвольной моноидальной категории. Использование такого понятия основано на наблюдении, что во многих практических приложениях множества морфизмов имеют дополнительную структуру. Для того, чтобы воспроизвести ассоциативную операцию композиции морфизмов в обычной категории, категория, из которой берутся морфизмы, должна иметь (ассоциативную) бинарную операцию с тождественным элементом, то есть как минимум иметь структуру моноидальной категории.
Абелева категория — категория, в которой морфизмы можно складывать, а ядра и коядра существуют и обладают определёнными удобными свойствами. Пример, который стал прототипом абелевой категории — категория абелевых групп. Теория абелевых категорий была разработана Александром Гротендиком для объединения нескольких теорий когомологий. Класс абелевых категорий замкнут относительно нескольких категорных конструкций; например, категория цепных комплексов с элементами из абелевой категории и категория функторов из малой категории в абелеву также являются абелевыми.
В теория категорий, замкнутая моноидальная категория — это категория, позволяющая брать тензорные произведения объектов, а также рассматривать объекты, соответствующие множествам морфизмов. Классический пример — категория множеств, в которой существует декартово произведение множеств, а также множество функций между двумя множествами. «Объект, соответствующий множеству морфизмов» обычно называют внутренним Hom.
Теорема Атьи — Зингера об индексе — утверждение о равенстве аналитического и топологических индексов эллиптического оператора на замкнутом многообразии. Установлено и доказано в 1963 году Майклом Атьёй и Изадором Зингером.
Пифагорова мозаика — замощение евклидовой плоскости квадратами двух различных размеров, в которой каждый квадрат касается четырёх квадратов другого размера своими четырьмя сторонами. Исходя из этой мозаики, можно доказать (наглядно) теорему Пифагора, за что мозаика и получила название пифагоровой. Мозаика часто используется в качестве узора для кафельного пола. В этом контексте мозаика известна также как узор классов.
Программа Ленглендса — сеть далеко идущих математических гипотез о связях между теорией чисел и геометрией, предложенная Робертом Ленглендсом в 1967 и 1970 годы. Основная цель — связать группы Галуа в алгебраической теории чисел с автоморфными формами и теорией представлений алгебраических групп над локальными полями и аделями. Считается одним из крупнейших математических исследовательских проектов XX века, отмечалась Эдвардом Френкелем как «теория великого объединения математики».
Конечное топологическое пространство — топологическое пространство, в котором существует лишь конечное число точек.
Владимир Георгиевич Тураев — советский и российский математик.
Джордж Эйр Эндрюс — американский математик, известный работами в теории чисел, анализе и комбинаторике.
Физика элементарных частиц и теория представлений — физика элементарных частиц при построении своих математических моделей в качестве важной составной части математического аппарата использует теорию представлений. Она связывает математическое описание свойств элементарных частиц со структурой групп Ли и алгебр Ли.
Некоммутативная геометрия (НКГ) — раздел математики, посвященный геометрическому подходу к некоммутативным алгебрам и построению «пространств», которые локально представлены некоммутативными алгебрами функций.
Маломерная топология — направление в топологии, изучающее многообразия или, в более общем смысле, топологические пространства четырёх или менее размерностей. В частности, к направлению относятся структурная теория 3-многообразий и 4-многообразий, теория узлов и теория кос. Направление можно рассматривать как часть геометрической топологии.