Глико́лиз, или путь Эмбдена — Мейергофа — Парнаса — процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты. Гликолиз состоит из цепи последовательных ферментативных реакций и сопровождается запасанием энергии в форме АТФ и НАДH. Гликолиз является универсальным путём катаболизма глюкозы и одним из трёх путей окисления глюкозы, встречающихся в живых клетках. Реакция гликолиза в суммарном виде выглядит следующим образом:
- Глюкоза + 2НАД+ + 2АДФ + 2Pi → 2 пируват + 2НАД*H + 2Н+ + 2АТФ + 2Н2O.
Глюконеогене́з — метаболический путь, приводящий к образованию глюкозы из неуглеводных соединений. Наряду с гликогенолизом, этот путь поддерживает в крови уровень глюкозы, необходимый для работы многих тканей и органов, в первую очередь, нервной ткани и эритроцитов. Он служит важным источником глюкозы в условиях недостаточного количества гликогена, например, после длительного голодания или тяжёлой физической работы. Глюконеогенез является обязательной частью цикла Кори, кроме того, этот процесс может быть использован для превращения пирувата, образованного при дезаминировании аминокислот аланина и серина.
Рибулозобисфосфаткарбоксилаза, рубиско — фермент, катализирующий присоединение углекислого газа к рибулозо-1,5-бисфосфату на первой стадии цикла Кальвина, а также реакцию окисления рибулозобифосфата на первой стадии процесса фотодыхания. Является одним из важнейших ферментов в природе, поскольку играет центральную роль в основном механизме поступления неорганического углерода в биологический круговорот. Рибулозобисфосфаткарбоксилаза является основным ферментом листьев растений и поэтому считается наиболее распространённым ферментом на Земле.
Клеточное, или тканевое дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды, а также образование энергии. Высвобожденная энергия запасается в химических связях макроэргических соединений и может быть использована по мере необходимости. Входит в группу процессов катаболизма. О физиологических процессах транспортировки к клеткам многоклеточных организмов кислорода и удалению от них углекислого газа см. статью Дыхание.
Восстановительный пентозофосфатный цикл, или цикл Кальвина — серия биохимических реакций, осуществляемая при фотосинтезе растениями, цианобактериями, прохлорофитами и пурпурными бактериями, а также многими бактериями-хемосинтетиками, является наиболее распространённым из механизмов автотрофной фиксации углекислого газа.
Пентозофосфа́тный путь — альтернативный путь окисления глюкозы, включает в себя окислительный и неокислительный этапы.
Альдолаза, также фруктозобисфосфат-(фруктозодифосфат)-альдолаза, реже альдолаза А — фермент из семейства альдолазы, катализирующий реакцию негидролитического расщепления связей C-С в молекуле фруктозо-1,6-дифосфата, в результате которой образуются дигидроксиацетонфосфат и глицеральдегид-3-фосфат в процессе гликолиза, а также обратную реакцию альдольной конденсации, происходящей в глюконеогенезе, по схеме:
Углеводный обмен, или метаболизм углеводов в организмах животных и человека. Метаболизм углеводов в организме человека состоит из следующих процессов:
- Расщепление в пищеварительном тракте поступающих с пищей поли- и дисахаридов до моносахаридов, дальнейшее всасывание моносахаридов из кишечника в кровь.
- Синтез и распад гликогена в тканях, прежде всего в печени.
- Гликолиз — распад глюкозы. Первоначально под этим термином обозначали только анаэробное брожение, которое завершается образованием молочной кислоты (лактата) или этанола и углекислого газа. В настоящее время понятие «гликолиз» используется более широко для описания распада глюкозы, проходящего через образование глюкозо-6-фосфата, фруктозо-1,6-дифосфата и пирувата как в отсутствие, так и в присутствии кислорода. В последнем случае употребляется термин «аэробный гликолиз», в отличие от «анаэробного гликолиза», завершающегося образованием молочной кислоты или лактата.
- Анаэробный путь прямого окисления глюкозы или, как его называют, пентозофосфатный путь.
- Взаимопревращение гексоз.
- Анаэробный метаболизм пирувата. Этот процесс выходит за рамки углеводного обмена, однако может рассматриваться как завершающая его стадия: окисление продукта гликолиза — пирувата.
- Глюконеогенез — образование углеводов из неуглеводных продуктов.
Фосфоенолпировиноградная кислота — эфир фосфорной кислоты и енольной формы пировиноградной кислоты.
1,3-Бисфосфоглицериновая кислота — смешанный ангидрид фосфорной кислоты и карбоксильной группы. Промежуточный продукт в реакциях гликолиза, глюконеогенеза, а также цикла Кальвина — наиболее распространённого в биосфере пути фиксации углерода при фотосинтезе и хемосинтезе.
Путь Э́нтнера — Ду́дорова, или КДФГ-путь — путь окисления глюкозы, приводящий к образованию из одной молекулы глюкозы двух молекул пирувата, одной молекулы АТФ и двух молекул восстановленных пиридиновых нуклеотидов. Хотя ранее считалось, что он имеет место лишь у небольшого числа грамотрицательных бактерий, в настоящее время установлено, что этот путь распространён в природе чрезвычайно широко и используется различными группами грамположительных и грамотрицательных бактерий, а также некоторыми археями и даже эукариотами.
3-Фосфоглицериновая кислота (3-ФГК, 3-фосфоглицерат) — органическое соединение, сложный эфир глицериновой кислоты и ортофосфорной кислоты, важный промежуточный метаболит гликолиза и цикла Кальвина. В цикле Кальвина 3-фосфоглицерат образуется в результате спонтанного распада нестабильного шестиуглеродного соединения, образованного в результате фиксации CO2 на молекуле рибулозо-1,5-бисфосфата. Таким образом, на каждую молекулу фиксированного CO2 образуется две молекулы 3-фосфоглицерата.
Дигидроксиацетонфосфат (ДГАФ) или фосфодиоксиацетон — биоорганическое соединение, играющее важную роль в цикле Кальвина и гликолизе.
Фруктозо-2,6-бисфосфат — регуляторная молекула всех эукариот, аллостерически, влияющая на активность ферментов фосфофруктокиназы 1 (ФФК-1) и фруктозо-1,6-бисфосфатазы (ФБФаза-1). Усиливает гликолиз и подавляет глюконеогенез. Представляет собой эфир фосфорной кислоты и фруктозы.
Триозофосфатный транслокатор (ТФТ) — интегральный белок-переносчик внутренней мембраны хлоропластов. Он осуществляет экспорт триозофосфатов, образовавшихся в цикле Кальвина, в цитоплазму в обмен на неорганический фосфат. Белок ТФТ — димер, состоящий из двух идентичных субъединиц и содержит от шести до восьми гидрофобных доменов, которые образуют трансмембранные α-спирали. В качестве субстратов ТФТ использует дигидроксиацетонфосфат, глицеральдегид-3-фосфат а также 3-фосфоглицериновую кислоту (3-ФГК). Таким образом, в цитоплазму попадает углерод, необходимый для синтеза сахарозы, а в хлоропласты транспортируется фосфат, который используется для регенерации АТФ и синтеза новых триозофосфатов. Кроме поддержания баланса фосфора между цитоплазмой и пластидами, триозофосфатный транслокатор способен экспортировать триозофофсфаты в обмен на 3-ФГК. В цитозоле ДГАФ или 3-ФГА подвергаются окислению в процессе гликолиза, что приводит к восстановлению одной молекулы НАД+ до НАДН и синтезу одной молекулы АТФ. Триозофосфат, окисленный до состояния 3-ФГК, вновь транспортируется в хлоропласт, где поступает в цикл Кальвина, а новый триозофосфат выходит в цитоплазму. Таким образом, ТФТ транспортирует восстановительные эквиваленты и АТФ в цитоплазму; этот механизм особенно важен, поскольку у пластид высших растений, в отличие от митохондрий, нет транспортёров, которые могли бы перекачивать АТФ или АДФ
Субстратное фосфорилирование — характерная для всех живых организмов реакция синтеза АТФ или ГТФ путём прямого переноса фосфата (PO3) на АДФ или ГДФ с высокоэнергетического промежуточного продукта. В ходе окисления органических соединений в живых клетках неорганический фосфат переносится на органическое вещество с образованием богатых энергией молекул, с которых он переносится на АДФ или ГДФ. При этом перенос может происходить только с молекул с достаточно высоким потенциалом переноса групп. Энергия гидролиза химических связей таких молекул должна быть выше чем энергия гидролиза АТФ, чтобы за счёт энергетического сопряжения обеспечить синтез АТФ из АДФ и Фн. К таким молекулам с высоким потенциалом переноса групп принадлежат фосфоенолпируват, 1,3-бисфосфоглицерат, ацильные производные кофермента A и креатинфосфат.
Фосфоглицераткиназа, или ФГК, — фермент, катализирующий обратимую реакцию переноса фосфатной группы от 1,3-бисфосфоглицериновой кислоты к АДФ, в результате которой образуются 3-фосфоглицерат и АТФ. ФГК является важным ферментом в процессе гликолиза. В рамках глюконеогенеза ФГК катализирует обратную реакцию, в результате чего образуются АДФ и 1,3-бисфосфоглицерат.
Бесполезный цикл, также известный как цикл субстрата, или «холостой» цикл, представляет собой циклический биохимический процесс, возникающий, когда два метаболических пути одновременно проходят в противоположных направлениях и не имеют общего эффекта, кроме рассеивания энергии в виде тепла. Причина, по которой этот цикл был назван «бесполезным» циклом, заключалась в том, что казалось, что этот цикл работает без чистой пользы для организма. Изначально этот процесс считался причудой метаболизма и, таким образом, был назван бесполезным циклом. После дальнейшего исследования было обнаружено, что бесполезные циклы очень важны для регулирования концентраций метаболитов. Например, если бы гликолиз и глюконеогенез были активными одновременно, глюкоза была бы преобразована в пируват путем гликолиза, а затем обратно в глюкозу путем глюконеогенеза с общим потреблением АТФ. Бесполезные циклы могут играть роль в регуляции метаболизма, где бесполезный цикл будет системой, колеблющейся между двумя состояниями и очень чувствительной к небольшим изменениям активности любого из вовлеченных ферментов. Цикл действительно генерирует тепло и может использоваться для поддержания теплового гомеостаза, например, в бурой жировой ткани молодых млекопитающих, или для быстрого генерирования тепла, например, в летательных мышцах насекомых и у животных, находящихся в спячке, во время периодического возбуждения от оцепенения. Сообщалось, что цикл субстрата метаболизма глюкозы — это не бесполезный цикл, а регулирующий процесс. Например, когда внезапно требуется энергия, АТФ заменяется АМФ, гораздо более реактивным аденином.
Альдолаза C, также фруктозо-бисфосфат альдолаза C или реже мозговой тип альдолазы — фермент из семейства фруктозо-1,6-бисфосфат альдолазы I типа, является одним из трёх изоферментов. Альдолаза С играет ключевую роль в углеводном обмене: в глюконеогенезе и гликолизе в головном мозге и нервной ткани. Фермент катализирует обратимую реакцию альдольного расщепления (негидролитического) и конденсации молекулы фруктозо-1,6-бисфосфата по реакции:
- фруктозо-1,6-бисфосфат дигидроксиацетонфосфат + глицеральдегид-3-фосфат
Альдолаза A, также фруктозо-бисфосфат альдолаза A или реже мышечный тип альдолазы — фермент из семейства фруктозо-1,6-бисфосфат альдолазы I класса, является одним из трёх изоферментов. Альдолаза А играет ключевую роль в углеводном обмене: в глюконеогенезе и гликолизе в скелетных мышцах и эритроцитах. Фермент катализирует обратимую реакцию альдольного расщепления (негидролитического) и конденсации молекулы фруктозо-1,6-бисфосфата по реакции:
- фруктозо-1,6-бисфосфат дигидроксиацетонфосфат + глицеральдегид-3-фосфат.