Волнова́я фу́нкция, или пси-фу́нкция — комплекснозначная функция, используемая в квантовой механике для математического описания чистого квантового состояния изолированной квантовомеханической системы. Наиболее распространённые символы для волновой функции — греческие буквы ψ и Ψ. Является коэффициентом разложения вектора состояния по базису. Например, при разложении по координатному базису:
Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.
Теоре́ма Нётер или первая теорема Нётер утверждает, что каждой дифференцируемой симметрии действия для физической системы с консервативными силами соответствует закон сохранения. Теорема была доказана математиком Эмми Нётер в 1915 году и опубликована в 1918 году. Действие для физической системы представляет собой интеграл по времени функции Лагранжа, из которого можно определить поведение системы согласно принципу наименьшего действия. Эта теорема применима только к непрерывным и гладким симметриям над физическим пространством.
Калибро́вка ве́кторного потенциа́ла — наложение дополнительных условий, позволяющих однозначно вычислить векторный потенциал электромагнитного поля при решении тех или иных физических задач. Налагаемые условия являются искусственными и служат для упрощения математических выкладок. Наиболее широкое распространение получили калибровка Кулона и калибровка Лоренца, но существуют и применяются и другие калибровки.
В квантовой механике задача о части́це в одноме́рном периоди́ческом потенциа́ле — идеализированная задача, которая может быть решена аналитически, без упрощений. При решении предполагается, что функция потенциала задана на всем бесконечном пространстве и периодична, то есть обладает трансляционной симметрией, что, вообще говоря, не выполняется для реальных кристаллов, где всегда существует как минимум один дефект — поверхность кристалла.
Фу́нкция Гри́на — функция, используемая для решения линейных неоднородных дифференциальных уравнений с граничными условиями . Названа в честь английского математика Джорджа Грина, который первым развил соответствующую теорию в 1830-е годы.
В квантовой механике ток вероятности описывает изменение функции плотности вероятности.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Теория функционала плотности — метод расчёта электронной структуры систем многих частиц в квантовой физике и квантовой химии. В частности, применяется для расчёта электронной структуры молекул и конденсированного вещества. Является одним из наиболее широко используемых и универсальных методов в вычислительной физике и вычислительной химии. Твёрдое тело рассматривается как система, состоящая из большого числа одинаково взаимодействующих между собой электронов, удерживаемых вместе решёткой из атомных ядер. Основная идея метода заключается в использовании понятия электронной плотности в основном состоянии, её распределение описывается одночастичным уравнением Шрёдингера.
Теорема Блоха — важная теорема физики твёрдого тела, устанавливающая вид волновой функции частицы, находящейся в периодическом потенциале. Названа в честь швейцарского физика Феликса Блоха. В одномерном случае эту теорему часто называют теоремой Флоке. Сформулирована в 1928 году.
Уравнение Паули — уравнение нерелятивистской квантовой механики, описывающее движение заряженной частицы со спином 1/2 во внешнем электромагнитном поле. Предложено Паули в 1927 году. Не путать с основным кинетическим уравнением, также иногда называемым уравнением Паули.
Бра и кет — алгебраический формализм, предназначенный для описания квантовых состояний. Называется также обозначениями Дирака. В матричной механике данная система обозначений является общепринятой. Данная система обозначений представляет собой не более чем иные текстуальные обозначения для векторов, ковекторов, билинейных форм и скалярных произведений, и потому применима в линейной алгебре вообще. В тех случаях, когда данная система обозначений используется в линейной алгебре, обычно речь идет о бесконечно-мерных пространствах и/или о линейной алгебре над комплексными числами.
Монохроматическая волна — модель в физике, удобная для теоретического описания явлений волновой природы, означающая, что в спектр волны входит всего одна составляющая по частоте.
Плотность заряда — это количество заряда, приходящееся на единицу длины, площади или объёма, таким образом определяются линейная, поверхностная и объемная плотности заряда, которые измеряются в системе СИ: в Кулонах на метр (Кл/м), в Кулонах на квадратный метр (Кл/м²) и в Кулонах на кубический метр (Кл/м³), соответственно. В отличие от плотности вещества, плотность заряда может иметь как положительные, так и отрицательные значения, это связано с тем, что существуют положительные и отрицательные заряды.
Квазиволновой вектор — векторная величина, которая характеризует состояние частицы в периодическом поле, например, в кристаллической решётке. Она играет ту же роль для частиц в периодических системах, что и волновой вектор в пространственно однородной среде. Квазиволновой вектор связан с квазиимпульсом частицы :
Теория де Бройля — Бома, также известная как теория волны-пилота, механика Бома, интерпретация Бома и причинная интерпретация, является интерпретацией квантовой теории. В дополнение к волновой функции на пространстве всех возможных конфигураций, она постулирует реальную конфигурацию, которая существует, даже не будучи измеряемой. Эволюция конфигурации во времени определяется волновой функцией с помощью управляющего уравнения. Эволюция волновой функции во времени задаётся уравнением Шрёдингера. Теория названа в честь Луи де Бройля (1892—1987) и Дэвида Бома (1917—1992).
Матричная квантовая механика — это формулировка квантовой механики, созданная Вернером Гейзенбергом, Максом Борном и Паскуалем Йорданом в 1925 году. Матричная квантовая механика была первой концептуально автономной и логически непротиворечивой формулировкой квантовой механики. Её описание квантовых скачков заменило модель Бора для электронных орбит. Это было сделано путём интерпретации физических свойств частиц как матриц, которые эволюционируют во времени. Матричная механика эквивалентна волновой формулировке Шрёдингера квантовой механики на основе теоремы Риса — Фишера, как это проявляется в обозначениях бра и кет Дирака.
Физические свойства графена проистекают из электронных свойств атомов углерода и поэтому часто имеют нечто общее с остальными аллотропными модификациями углерода, которые были известны до него, такими как графит, алмаз, углеродные нанотрубки. Конечно, схожести больше с графитом, так как он состоит из графеновых слоёв, но без новых уникальных физических явлений и исследований других материалов и наработок физических методов анализа и теоретических подходов графен не привлёк бы специалистов из таких разных дисциплин как физика, химия, биология и физика элементарных частиц.
Модель Бозе — Хаббарда даёт примерное описание физики взаимодействия бозонов на пространственной решётке. Она тесно связана с моделью Хаббарда, возникшей в физике твёрдого тела как приближённое описание сверхпроводящих систем и движения электронов между атомами твёрдого кристаллического вещества. Слово Бозе указывает на тот факт, что частица в системе — бозон. Впервые модель была введена Х. Гершем и Г. Ноллмэном в 1963 году, модель Бозе — Хаббарда может использоваться при изучении систем подобных бозонным атомам в оптической решётке. В противоположность этому, модель Хаббарда применима к фермионам (электронам), а не бозонам. Кроме того, модель обобщается на сочетания Бозе- и Ферми-частиц, в этом случае, в соответствии с гамильтонианом, модель будет называться моделью Бозе — Ферми — Хаббарда.
Критическая динамика — раздел теории критического поведения и статистической физики, описывающий динамические свойства физической системы в или вблизи критической точки. Является продолжением и обобщением критической статики, позволяя описывать величины и характеристики системы, которые нельзя выразить лишь через одновременны́е равновесные функции распределения. Такими величинами являются, например, коэффициенты переноса, скорости релаксации, разновременны́е корреляционные функции, функции отклика на зависящие от времени возмущения.