А́томная электроста́нция (АЭС) — ядерная установка для производства энергии в заданных режимах и условиях применения, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используется ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками (персоналом) (НП-001). АЭС работает по принципу теплового двигателя, использующего пароводяной цикл Ренкина.
Я́дерный (а́томный) реа́ктор — устройство, предназначенное для организации управляемой, самоподдерживающейся цепной реакции деления, сопровождающейся выделением энергии.
Кипящий водо-водяной реактор — тип корпусного водо-водяного ядерного реактора, в котором пар генерируется непосредственно в активной зоне и направляется в турбину.
Реактор большой мощности канальный (РБМК) — серия энергетических ядерных реакторов, разработанных в Советском Союзе. Реактор РБМК канальный, гетерогенный, графито-водный, кипящего типа, на тепловых нейтронах. Теплоноситель — кипящая вода.
Газовая турбина, модульный гелиевый реактор — международный проект по созданию АЭС, отвечающей требованиям XXI века по безопасности, на базе высокотемпературного газоохлаждаемого реактора с гелиевым теплоносителем, работающим в прямом газотурбинном цикле. Английское название «Gas Turbine — Modular Helium Reactor (GT-MHR)». Создание двух реакторов такого типа наряду с реакторами на быстрых нейтронах БН-600 и БН-800 включено в российско-американскую программу утилизации оружейного плутония, не являющегося необходимым для целей обороны. Проект финансируется на паритетных началах Росатомом (РФ) и Департаментом энергетики и NNSA (США).
Кана́льный я́дерный реа́ктор — ядерный реактор, активная зона которого представляет собой набор т. н. технологических каналов, расположенных в массе замедлителя. Каждый канал представляет собой герметичную конструкцию, в которой заключено либо ядерное топливо, либо системы управления и защиты, а также каналы для прокачки теплоносителя. Технологические каналы не зависят друг от друга и допускают замену топлива без остановки реактора.
Реа́ктор на расплавах солей — является одним из видов ядерных реакторов деления, в которых основой охлаждающей жидкости является смесь расплавленных солей, которая может работать при высоких температурах, оставаясь при этом при низком давлении. Это уменьшает механические напряжения и повышает безопасность и долговечность.
ЭГП-6 — энергетический графито-водный гетерогенный реактор канального типа на тепловых нейтронах с естественной циркуляцией, реализующий схему прямого цикла. Его прототипом являются реакторные установки АМ и АМБ. Все четыре ЭГП-6 установлены на Билибинской АЭС, пуск с 1974 по 1976 год. Реактор используется для производства как электрической, так и тепловой энергии.
Список включает все атомные электростанции, в состав которых входят энергоблоки с реакторами РБМК — действующими, закончившими работу, а также теми, чьё строительство было остановлено. Список разбит по статусу станций и странам-владельцам, по алфавиту.
Список АЭС мира содержит сгруппированные по странам АЭС исследовательские центры, а также другие площадки, на которых располагаются или располагались энергетические реакторы, то есть реакторы, предназначенные для выработки электроэнергии. Список включает в себя реакторы действующие, закрытые и строящиеся.
Ядерные реакторы — это высокотехнологичные установки, которые применяются для нужд энергетики, для военных целей, а также используются для транспортных нужд.
БН-800 — ядерный энергетический реактор с натриевым теплоносителем, относящийся к категории реакторов на быстрых нейтронах с использованием оксидного уран-плутониевого МОКС-топлива.
Улучшенный реактор с газовым охлаждением или является одним из типов ядерных реакторов. Это второе поколение британских ядерных реакторов с газовым охлаждением, с использованием графита в качестве замедлителя нейтронов и углекислого газа в качестве теплоносителя. AGR был разработан на основе реакторов типа Magnox. AGR работает при более высокой температуре газа, способствующей повышению тепловой эффективности. По этой причине необходимо покрывать топливо нержавеющей сталью, чтобы выдержать высокую температуру. Поскольку облицовка топлива из нержавеющей стали имеет более высокое сечение захвата нейтронов, чем топливные сборки Magnox, топливо используется менее эффективно.
Атомная энергетика США является крупнейшей в мире по вырабатываемой энергии. По данным за ноябрь 2021 года, в США работают 93 ядерных реактора суммарной мощностью 95,5 ГВт, которые вырабатывают 19,7 % электроэнергии в стране.
Магнокс (англ. Magnox) — серия ядерных реакторов, разработанная в Великобритании, в которых в качестве ядерного топлива используется природный металлический уран, в качестве замедлителя графит, а роль теплоносителя выполняет углекислый газ. Магнокс относится к типу газографитовых реакторов (GCR по классификации МАГАТЭ). Название «магнокс» совпадает с названием марки магниево-алюминиевого сплава, используемого в этих реакторах для изготовления оболочек топливных элементов. Как и большинство реакторов первого поколения Магнокс является двухцелевым реактором, предназначенным как для наработки плутония-239 так и для производства электроэнергии. Как и в других реакторах, производящих плутоний, важной особенностью является слабое поглощение нейтронов материалами активной зоны. Эффективность графитового замедлителя позволяет работать на природном урановом топливе без необходимости его обогащения. Графит легко окисляется на воздухе, поэтому в качестве теплоносителя использован CO2. Передача тепла от первого контура ко второму осуществляется в парогенераторах, а полученный пар приводит в движение обычную турбину для производства электроэнергии. Конструкция реактора позволяет производить перегрузку топлива на ходу.
РБМКП-2400 — проект ядерного реактора серии РБМК с номинальной электрической мощностью 2400 МВт, тепловой — 6500 МВт. Реактор РБМКП-2400 был разработан на основе полученного опыта при эксплуатации реакторов РБМК-1000 и реакторов серии АМБ. Существенным отличием проекта РБМКП-2400 от реакторов РБМК являлось внедрение пароперегревательных каналов для ядерного перегрева пара, а также реализация принципа секционно-блочного конструирования реактора, позволявшего сократить сроки строительства АЭС.
Многопетлевой канальный энергетический реактор (МКЭР) — серия энергетических кипящих уран-графитовых реакторов третьего поколения с естественной циркуляцией теплоносителя, разработанных в 1990—2000-е годы. Реакторы МКЭР являются эволюционным развитием серии канальных реакторов РБМК с учётом полученного опыта при эксплуатации данных реакторов, а также современных требований по безопасности АЭС. Реакторы МКЭР разрабатывались в первую очередь для замены выводящихся из эксплуатации энергоблоков с реакторами РБМК.
Реакторы поколения III — ядерные реакторы, появившиеся в результате эволюции реакторов поколения II. Характерными чертами этих реакторов являются более высокая топливная эффективность, улучшенный тепловой КПД, значительное усовершенствование системы безопасности и стандартизация конструкции для снижения капитальных затрат и затрат на техническое обслуживание. Первым реактором поколения III стал в 1996 году реактор энергоблока 6 на АЭС Касивадзаки, относящийся к типу улучшенных кипящих водяных реакторов.
Реакторы поколения IV — набор конструкций ядерных реакторов, которые в настоящее время исследуются на предмет коммерческого применения Международным форумом поколения IV. Целью проектов является повышение безопасности, устойчивости, эффективности и снижение стоимости.
Высокотемпературный ядерный реактор представляет собой прямоточный ядерный реактор поколения IV с графитовым замедлителем. ВГР — это тип высокотемпературного реактора (ВТР), который теоретически может иметь температуру на выходе 1000 °C. Активная зона реактора может быть либо «призматическим блоком», либо активной зоной с галечным слоем. Высокие температуры позволяют производить водород с помощью термохимического цикла серо-йод.