Граф Дюрера
Граф Дюрера — неориентированный кубический граф с 12 вершинами и 18 рёбрами. Граф назван именем Альбрехта Дюрера, чья гравюра «Меланхолия» (1514) содержала изображение так называемого многогранника Дюрера — выпуклого многогранника, имеющего граф Дюрера в качестве остова[англ.]. Многогранник Дюрера является одним из четырёх возможных хорошо укрытых простых выпуклых многогранников.
Многогранник Дюрера
Многогранник Дюрера комбинаторно эквивалентен кубу с двумя усечёнными противоположными вершинами[1], хотя на рисунке Дюрера он, скорее, нарисован как усечённый ромбоэдр или трёхгранный усечённый трапецоид[2]. Точные геометрические свойства нарисованного Дюрером многогранника служат предметом академических споров, в которых предполагаются различные гипотетические значения (острых) углов от 72° до 82°[3].
Свойства графа
Граф Дюрера | |
---|---|
Назван в честь | Альбрехт Дюрер |
Вершин | 12 |
Рёбер | 18 |
Радиус | 3 |
Диаметр | 4 |
Обхват | 3 |
Автоморфизмы | 12 (D6) |
Хроматическое число | 3 |
Хроматический индекс | 3 |
Свойства | Планарный Хорошо укрытый |
Медиафайлы на Викискладе |
Граф Дюрера является графом, образованным вершинами и рёбрами многогранника Дюрера. Граф является кубическим с обхватом 3 и диаметром 4. Поскольку граф является скелетом многогранника Дюрера, он может быть получен путём применения преобразования треугольник-звезда противоположных вершин графа куба или как обобщённый граф Петерсена . Как и любой другой граф выпуклого многогранника, граф Дюрера является вершинно 3-связным простым планарным графом.
Граф Дюрера является хорошо укрытым, что означает, что все его наибольшие независимые множества имеют одно и то же число вершин — четыре. Граф является одним из хорошо укрытых кубических многогранных графов и одним из семи хорошо укрытых 3-связных кубических графов. Другими тремя хорошо укрытыми простыми выпуклыми многогранниками являются тетраэдр, треугольная призма и пятиугольная призма[4][5].
Граф Дюрера является гамильтоновым с LCF-обозначением [-4,5,2,-4,-2,5;-][6]. Точнее, граф имеет ровно шесть гамильтоновых циклов, каждая пара которых может быть отображена в любую другую симметриями графа[7].
Симметрии
Группа автоморфизмов как графа Дюрера, так и многогранника Дюрера (в виде усечённого куба или в форме, представленной Дюрером) изоморфна диэдрической группе порядка 12.
Галерея
- Хроматический индекс графа Дюрера равен 3.
- Хроматическое число графа Дюрера равно 3.
- Граф Дюрера гамильтонов.
Примечания
- ↑ Weisstein, Eric W. Dürer's Solid (англ.) на сайте Wolfram MathWorld.
- ↑ Вебер, 1900.
- ↑ Вайцель, 2004.
- ↑ Кэмпбелл, Пламмер, 1988.
- ↑ Кэмпбелл, Эллингхэм, Ройл, 1993.
- ↑ Кастанья и Принс (Кастанья, Принс (1972) ) приписывают доказательство гамильтоновости класса обобщённых графов Петерсона, в который входит граф Дюрера, тезисам диссертации 1968 года Робертсона (G. N. Robertson) из университета Ватерлоо.
- ↑ Швенк, 1989.
Литература
- S. R. Campbell, M. N. Ellingham, Gordon F. Royle. A characterisation of well-covered cubic graphs // Journal of Combinatorial Mathematics and Combinatorial Computing. — 1993. — Т. 13. — С. 193–212.
- Stephen R. Campbell, Michael D. Plummer. On well-covered 3-polytopes // Ars Combinatoria. — 1988. — Т. 25, вып. A. — С. 215–242.
- Frank Castagna, Geert Prins. Every Generalized Petersen Graph has a Tait Coloring // Pacific Journal of Mathematics. — 1972. — Т. 40. — doi:10.2140/pjm.1972.40.53.
- Allen J. Schwenk. Enumeration of Hamiltonian cycles in certain generalized Petersen graphs // Journal of Combinatorial Theory. — 1989. — Т. 47, вып. 1. — С. 53–59. — doi:10.1016/0095-8956(89)90064-6.
- P. Weber. Beiträge zu Dürers Weltanschauung—Eine Studie über die drei Stiche Ritter, Tod und Teufel, Melancholie und Hieronymus im Gehäus. — Strassburg, 1900. (как процитировано у Вайцеля (Вайцель (2004) ).
- Hans Weitzel. A further hypothesis on the polyhedron of A. Dürer's engraving Melencolia I // Historia Mathematica. — 2004. — Т. 31, вып. 1. — С. 11–14. — doi:10.1016/S0315-0860(03)00029-6.