Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля, который представляет собой совокупность строк и столбцов, на пересечении которых находятся его элементы. Количество строк и столбцов задаёт размер матрицы. Матрицу можно также представить в виде функции двух дискретных аргументов. Хотя исторически рассматривались, например, треугольные матрицы, в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.
Дерево — связный ациклический граф. Связность означает наличие маршрута между любой парой вершин, ацикличность — отсутствие циклов. Отсюда, в частности, следует, что число рёбер в дереве на единицу меньше числа вершин, а между любыми парами вершин имеется один и только один путь.
Код — взаимно однозначное отображение конечного упорядоченного множества символов, принадлежащих некоторому конечному алфавиту, на иное, не обязательно упорядоченное, как правило более обширное множество символов для кодирования передачи, хранения или преобразования информации.
Код Хэ́мминга — самоконтролирующийся и самокорректирующийся код. Построен применительно к двоичной системе счисления.
Многосеточный метод — метод решения системы линейных алгебраических уравнений, основанный на использовании последовательности уменьшающихся сеток и операторов перехода от одной сетки к другой. Сетки строятся на основе больших значений в матрице системы, что позволяет использовать этот метод при решении эллиптических уравнений даже на нерегулярных сетках.
В области математики и теории информации линейный код — тип блокового кода, использующийся в схемах определения и коррекции ошибок. Линейные коды, по сравнению с другими кодами, позволяют реализовывать более эффективные алгоритмы кодирования и декодирования информации.
Коды Рида — Соломона — недвоичные циклические коды, позволяющие исправлять ошибки в блоках данных. Элементами кодового вектора являются не биты, а группы битов (блоки). Очень распространены коды Рида — Соломона, работающие с байтами (октетами).
Код с малой плотностью проверок на чётность — используемый в передаче информации код, частный случай блочного линейного кода с проверкой чётности. Особенностью является малая плотность значимых элементов проверочной матрицы, за счёт чего достигается относительная простота реализации средств кодирования.
Ту́рбокод — параллельный каскадный блоковый систематический код, способный исправлять ошибки, возникающие при передаче цифровой информации по каналу связи с шумами. Синонимом турбокода является известный в теории кодирования термин — каскадный код.
Умноже́ние ма́триц — одна из основных операций над матрицами. Матрица, получаемая в результате операции умножения, называется произведе́нием ма́триц. Элементы новой матрицы получаются из элементов старых матриц в соответствии с правилами, проиллюстрированными ниже.
Пермане́нт в математике — числовая функция, определённая на множестве всех матриц; для квадратных матриц похожа на детерминант, и отличается от него лишь в том, что в разложении на перестановки берутся не чередующиеся знаки, а все плюсы. В отличие от детерминанта, определение перманента расширено и на неквадратные матрицы.
McEliece — криптосистема с открытыми ключами на основе теории алгебраического кодирования, разработанная в 1978 году Робертом Мак-Элисом. Это была первая схема, использующая рандомизацию в процессе шифрования. Алгоритм не получил широко признания в криптографии, но в то же время является кандидатом для постквантовой криптографии, так как устойчив к атаке с использованием Алгоритма Шора.
Экспандер — сильносвязный разреженный граф, при этом связность может определяться по вершинам, дугам или спектру.
Криптосистема Сидельникова (Мак-Элиса—Сидельникова) — криптографическая система с открытым ключом, основанная на криптосистеме McEliece. Была предложена математиком, академиком Академии криптографии РФ Владимиром Михайловичем Сидельниковым в 1994 году. Сидельников предложил данную криптосистему, поскольку для системы McEliece к тому времени уже были найдены алгоритмы, взламывающие её за полиномиальное, либо субэкспоненциальное время работы.
Теорема о планарном разбиении — это форма изопериметрического неравенства для планарных графов, которое утверждает, что любой планарный граф может быть разбит на более мелкие части путём удаления небольшого числа вершин. В частности, удалением O(√n) вершин из графа с n вершинами можно разбить граф на несвязные подграфы, каждый из которых имеет не более 2n/3 вершин.
Рекурсивные нейронные сети — вид нейронных сетей, работающих с данными переменной длины. Модели рекурсивных сетей используют иерархические структуры образцов при обучении. Например, изображения, составленные из сцен, объединяющих подсцены, включающие много объектов. Выявление структуры сцены и её деконструкция- нетривиальная задача. При этом необходимо как идентифицировать отдельные объекты, так и всю структуру сцены.
Модульное разложение — это разложение графа на подмножества вершин, называемых модулями. Модуль является обобщением компоненты связности графа. В отличие от компонент связности, однако, один модуль может быть собственным подмножеством другого. Модули, поэтому, ведут к рекурсивной (иерархической) декомпозиции графа, а не просто к разбиениям.
Стирающий код — в теории кодирования помехоустойчивый код, способный восстановить целые пакеты данных в случае их потери. Такой код позволяет бороться с утечками данных при передаче по каналам связи или работе с памятью. Обычно он используется, когда точная позиция потерянных данных известна априори.
Двоичный код Гоппы — код коррекции ошибок из класса общих кодов Гоппы, описан Валерием Денисовичем Гоппой. В сравнении с другими вариантами, бинарная структура даёт несколько математических преимуществ, а также подходит для общего использования в вычислительной технике и телекоммуникациях. Двоичные коды Гоппы обладают интересными свойствами, полезными в криптосистемах, подобных McEliece.