Граф Петерсена — неориентированный граф с 10 вершинами и 15 рёбрами; достаточно простой граф, используемый в качестве примера и контрпримера для многих задач в теории графов.
Граф Грёча — граф без треугольников с 11 вершинами, 20 рёбрами, хроматическим числом 4 и числом скрещиваний 5. Граф назван в честь немецкого математика Герберта Грёча и он демонстрирует необходимость предположения планарности в теореме Грёча, которая утверждает, что любой планарный граф без треугольников можно раскрасить в 3 цвета. Граф Грёча является членом бесконечной последовательности графов без треугольников, в которой каждый граф является мычельскианом предыдущего графа, начиная с нуль-графа. Эта последовательность графов была использована Мыцельским, чтобы показать, что существуют графы без треугольников с произвольно большим хроматическим числом. По этой причине иногда граф Грёча называют графом Мыцельского или Мыцельского-Грёча. В отличие от других, более поздних графов в последовательности, граф Грёча является наименьшим графом без треугольников с его хроматическим числом.
В теории графов графом Халина называется некоторый вид планарного графа, который строится из дерева, имеющего по меньшей мере 4 вершины, ни одна из которых не имеет в точности двух соседей. Дерево рисуется на плоскости так, что никакие рёбра не пересекаются, затем добавляются рёбра, соединяющие все его листья в цикл. Графы Халина названы по имени немецкого математика Рудольфа Халина, изучавшего их в 1971 году, но кубические графы Халина изучались за столетие до этого английским математиком Томасом Киркманом.
Граф Хивуда — ненаправленный граф с 14 вершинами и 21 ребром, названный в честь Перси Джона Хивуда.
Граф Дезарга — дистанционно-транзитивный кубический граф с 20 вершинами и 30 рёбрами. Назван в честь Жерара Дезарга. Возникает в некоторых комбинаторных построениях, имеет высокую степень симметрии, это единственный известный непланарный кубический частичный куб и применяется в химических базах данных.
Куби́ческий граф — граф, в котором все вершины имеют степень три. Другими словами, кубический граф является 3-регулярным. Кубические графы называются также тривалентными.
Снарк Секереша — снарк с 50 вершинами и 75 рёбрами, пятый известный снарк. Открыт Дьёрдьем Секерешем в 1973 году.
Граф Коксетера — 3-регулярный граф с 28 вершинами и 42 рёбрам Все кубические дистанционно-регулярные графы известны, граф Коксетера — один из 13-ти таких графов.
Граф Вагнера — 3-регулярный граф с 8 вершинами и 12 рёбрами, является 8-вершинной лестницей Мёбиуса.
Полиэдральный граф — неориентированный граф, образованный из вершин и рёбер выпуклого многогранника, или, в контексте теории графов — вершинно 3-связный планарный граф.
Граф Татта — пример кубического полиэдрального графа, не являющегося гамильтоновым. Таким образом, он служит контрпримером к гипотезе Тэйта, предполагавшей, что любой 3-регулярный многогранник имеет гамильтонов цикл.
В теории графов граф Науру — это симметричный двудольный кубический граф с 24 вершинами и 36 рёбрами. Граф был назван Дэвидом Эпштейном по аналогии с двенадцатилучевой звездой на флаге Науру.
В теории графов граф Хершеля — это двудольный неориентированный граф с 11 вершинами и 18 рёбрами, наименьший негамильтонов полиэдральный граф. Граф назван по имени британского астронома А. С. Хершеля, написавшего раннюю работу по поводу игры «Икосиан» Уильяма Роуэна Гамильтона — граф Хершеля даёт наименьший выпуклый многогранник, для которого игра не имеет решения. Однако статья Хершеля описывает решения для игры «Икосиан» только для тетраэдра и икосаэдра, и не описывает граф Хершеля.
Граф Дюрера — неориентированный кубический граф с 12 вершинами и 18 рёбрами. Граф назван именем Альбрехта Дюрера, чья гравюра «Меланхолия» (1514) содержала изображение так называемого многогранника Дюрера — выпуклого многогранника, имеющего граф Дюрера в качестве остова. Многогранник Дюрера является одним из четырёх возможных хорошо укрытых простых выпуклых многогранников.
Алгебраическая теория графов — направление в теории графов, применяющее алгебраические методы к теоретико-графовым задачам. В свою очередь, алгебраическая теория графов подразделяется на три ветви: линейно-алгебраическую, теоретико-групповую и изучающую инварианты графов.
В теории графов граф «бабочка» — это планарный неориентированный граф с 5 вершинами и 6 рёбрами. Граф может быть построен объединением двух копий циклов C3 по одной общей вершине, а потому граф изоморфен графу дружеских отношений F2.
Граф Фолкмана — это двудольный 4-регулярный граф с 20 вершинами и 40 рёбрами.
Бидиакис-куб — это 3-регулярный граф с 12 вершинами и 18 рёбрами.
Характерная раскраска или характерная разметка графа — это назначение цветов или меток вершинам графа, которые разрушают нетривиальные симметрии графа. Не требуется, чтобы раскраска была правильной — смежным вершинам разрешено иметь одинаковый цвет. Для раскрашенного графа не должно существовать биективного отображения множества вершин с сохранением смежности и раскраски. Минимальное число цветов в характерной раскраске называется характерным числом графа.
Роберт Вертхаймер Фрухт немецко-чилийский математик, его научной специальностью была теория графов и симметрии графов.