Кони́ческое сече́ние, или ко́ника, — пересечение плоскости с поверхностью прямого кругового конуса. Существует три главных типа конических сечений: эллипс, парабола и гипербола, кроме того, существуют вырожденные сечения: точка, прямая и пара прямых. Окружность можно рассматривать как частный случай эллипса. Кроме того, параболу можно рассматривать как предельный случай эллипса, один из фокусов которого бесконечно удалён.
Углова́я ско́рость — векторная величина, характеризующая быстроту и направление вращения материальной точки или абсолютно твёрдого тела относительно оси вращения. Модуль угловой скорости для вращательного движения совпадает с мгновенной угловой частотой вращения, а направление перпендикулярно плоскости вращения и связано с направлением вращения правилом правого винта. Строго говоря, угловая скорость представляется псевдовектором, и может быть также представлена в виде кососимметрического тензора.
Теле́сный у́гол — часть пространства, которая является объединением всех лучей, выходящих из данной точки и пересекающих некоторую поверхность. Частными случаями телесного угла являются трёхгранные и многогранные углы. Границей телесного угла является некоторая коническая поверхность. Обозначается телесный угол обычно буквой Ω.
Эпицикло́ида — плоская кривая, образуемая фиксированной точкой окружности, катящейся по внешней стороне другой окружности без скольжения.
Поворо́т (враще́ние) — движение плоскости или пространства, при котором по крайней мере одна точка остаётся неподвижной.
Ромбоэдр — это геометрическое тело, являющееся обобщением куба, у которого грани не обязательно квадратны, а лишь являются ромбами. Ромбоэдр является параллелепипедом, в котором все рёбра равны. Ромбоэдр можно использовать для определения ромбоэдрической решётчатой системы, сот с ромбоэдрическими ячейками.
Логарифми́ческая спира́ль или изогональная спираль — особый вид спирали, часто встречающийся в природе.
Полярная система координат — двумерная система координат, в которой каждая точка на плоскости определяется двумя числами — полярным углом и полярным радиусом. Полярная система координат особенно полезна в случаях, когда отношения между точками проще изобразить в виде радиусов и углов; в более распространённой декартовой, или прямоугольной, системе координат, такие отношения можно установить только путём применения тригонометрических уравнений.
Фазированной антенной решёткой называют антенную решётку, фазой токов (поля) в каждом из элементов которой можно управлять.
Формула тангенса половинного угла — тригонометрическая формула, связывающая тангенс половинного угла с тригонометрическими функциями полного угла:
Теорема Эрдёша — Эннинга — утверждение о том, что бесконечное множество точек на плоскости может иметь целые расстояния между точками множества только в том случае, когда все точки лежат на одной прямой. Названа по именам Пала Эрдёша и Норманна Эннинга, опубликовавших её доказательство в 1945 году.
Трисектриса Маклорена — кубика, примечательная своим свойством трисекции, поскольку она может быть использована для трисекции угла. Её можно определить как геометрическое место точек пересечения двух прямых, каждая из которых вращаются равномерно вокруг двух различных точек (полюсов) с отношением угловых скоростей 1:3, при этом первоначально прямые совпадают с прямой, проходящей через эти полюса. Обобщение этого построения называется Секущая Маклорена. Секущая названа в честь Колина Маклорена, который исследовал кривую в 1742 году.
Геометрический фактор — физическая величина, характеризующая то, насколько свет в оптической системе "расширен" по размерам и направлениям. Эта величина соответствует параметру качества пучка (BPP) в физике Гауссовых пучков.
Геометрический остов или t-остовной граф, или t-остов первоначально был введён как взвешенный граф на множестве точек в качестве вершин, для которого существует t-путь между любой парой вершин для фиксированного параметра t. t-путь определяется как путь в графе с весом, не превосходящим в t раз пространственное расстояние между конечными точками. Параметр t называется коэффициентом растяжения остова.
Минимальная поверхность Бура — двухмерная минимальная поверхность, вложенная с самопересечениями в трёхмерное евклидово пространство. Поверхность названа именем Эдмонда Бура, работа которого о минимальных поверхностях получила в 1861 году математический приз Французской академии наук.