В теории графов под графом Клебша понимается один из двух дополняющих друг друга графов, имеющих 16 вершин. Один из них имеет 40 рёбер и является 5-регулярным графом, другой имеет 80 рёбер и является 10-регулярным графом. 80-рёберный вариант — это половинный граф куба 5-го порядка. Назван графом Клебша в 1968 году Зайделем ввиду его связи с конфигурацией прямых поверхности четвёртого порядка, открытой 1868 году немецким математиком Альфредом Клебшем. 40-рёберный вариант – это складной граф куба 5 порядка. Он известен также под именем граф Гринвуда — Глизона после работы Гринвуда и Глизона, в которой они использовали этот граф для вычисления числа Рамсея R (3,3,3) = 17 .
В теории графов двусвязный граф — это связный и неделимый граф, в том смысле, что удаление любой вершины не приведёт к потере связности. Теорема Уитни утверждает, в частности, что граф двусвязен тогда и только тогда, когда между любыми двумя его вершинами есть минимум два непересекающихся пути. Таким образом, двусвязный граф не имеет шарниров.
В теории графов графом МакГи, или (3-7)-клеткой, называется 3-регулярный граф с 24 вершинами и 36 рёбрами.
В теории графов спичечным графом называется граф, который можно нарисовать на плоскости таким образом, что все его рёбра представляют собой отрезки прямой длиной единица и рёбра не пересекаются. Таким образом, этот граф имеет вложение в плоскость одновременно в виде графа единичных расстояний и планарного графа. Говоря неформально, спичечный граф можно выложить непересекающимися на плоской поверхности спичками, откуда и название.
Сильно регулярный граф — вариация понятия регулярный граф.
Граф Коксетера — 3-регулярный граф с 28 вершинами и 42 рёбрам Все кубические дистанционно-регулярные графы известны, граф Коксетера — один из 13-ти таких графов.
Полиэдральный граф — неориентированный граф, образованный из вершин и рёбер выпуклого многогранника, или, в контексте теории графов — вершинно 3-связный планарный граф.
Ребро в геометрии — отрезок, соединяющий две вершины многоугольника или многогранника. В многоугольниках ребро является отрезком, лежащим на границе и чаще называется стороной многоугольника. В трёхмерных многогранниках и в многогранниках большей размерности ребро — это отрезок, общий для двух граней. Отрезок, соединяющий две вершины и проходящий через внутренние или внешние точки, ребром не является и называется диагональю.
Ранг неориентированного графа имеет два не связанных друг с другом определения. Пусть n равно числу вершин графа.
- В терминах теории матриц ранг r неориентированного графа определяется как ранг его матрицы смежности.
- Аналогично, дефект графа определяется как дефект ядра его матрицы смежности, что равно n − r.
- В терминах теории матроидов графов ранг неориентированного графа определяется как число n − c, где c — число связных компонент графа. Эквивалентно, ранг графа — это ранг ориентированной матрицы инцидентности, ассоциированной с графом.
- Аналогично, дефект графа — это дефект ядра ориентированной матрицы инцидентности, который задаётся формулой m − n + c, где n и c определены выше, а m — число рёбер графа. Дефект равен первому числу Бетти графа. Сумма ранга и дефекта даёт число рёбер.
Граф Хигмана — Симса — это 22-регулярный неориентированный граф со 100 вершинами и 1100 рёбрами. Граф является уникальным сильно регулярным графом srg(100,22,0,6), т.е. никакая соседняя пара вершин не имеет общих соседей и любая несоседняя пара вершин имеет шесть общих соседей. Граф был впервые построен Меснером и был переоткрыт в 1968 Дональдом Дж. Хигманом и Чарльзом Симсом как путь определения группы Хигмана — Симса и эта группа является подгруппой с индексом два в группе автоморфизмов графа Хигмана — Симса.
Графы Чана — набор из трёх 12-регулярных неориентированных графов, каждый с 28 вершинами и 168 рёбрами. Все они сильно регулярны и имеют те же параметры и спектр, что и рёберный граф L(K8) полного графа K8. Графы Чана названы именем Ли-Чиена Чана, который доказал, что, за исключением этих трёх графов, любой рёберный граф полного графа единственным образом определяется его параметрами сильно регулярного графа.
Граф Хоффмана является 4-регулярным графом с 16 вершинами и 32 рёбрами, который открыл Алан Хоффман и опубликовал в 1963. Граф коспектрален графу гиперкуба Q4.
Граф Робертсона или (4,5)-клетка — это 4-регулярный неориентированный граф с 19 вершинами и 38 рёбрами, названный именем Нейла Робертсона.
Граф Робертсона — Вегнера — 5-регулярный неориентированный граф с 30 вершинами и 75 рёбрами, названный именами Нейла Робертсона и Дж. Вегнера.
Граф Гевирца — сильно регулярный граф с 56 вершинами и валентностью 10. Граф назван именем математика Аллана Гевирца, описавшего граф в своей диссертации.
Целый граф — граф, спектр матрицы смежности которого состоит полностью из целых чисел. Другими словами, граф является целым графом, при условии, что все корни характеристического многочлена его матрицы смежности являются целыми числами. Понятие ввели в 1974 году Харари и Швенк.
Граф Брауэра — Хемерса — 20-регулярный неориентированный граф с 81 вершиной и 810 рёбрами. Это сильно регулярный, дистанционно-транзитивный граф и граф Рамануджана. Хотя его построение является математическим фольклором, он был назван именами Андреаса Брауэра и Уиллема Х. Хемерса, которые доказали его единственность в качестве строго регулярного графа.
Граф Берлекэмпа — ван Линта — Зейделя — это локально линейный сильно регулярный граф с параметрами (243,22,1,2), это означает, что граф имеет 243 вершины, 22 ребра на вершину, в точности одну общую вершину для каждой пары смежных вершин и в точности две общие вершины для любой пары несмежных. Граф построили Элвин Берлекэмп, Дж. Г. ван Линт и Йохан Якоб Зайдель как граф смежности троичных кодов Голея.