Куби́ка или ку́бика — плоская алгебраическая кривая 3-го порядка, то есть множество точек плоскости, заданных кубическим уравнением
Группы Матьё — это пять спорадических простых групп, M11, M12, M22, M23 и M24, введённые Эмилем Леонардом Матьё. Группы являются кратно транзитивными группами перестановок 11, 12, 22, 23 или 24 объектов. Это были первые открытые спорадические группы.
Алгебраическая геометрия — раздел математики, который объединяет алгебру и геометрию. Главным предметом изучения классической алгебраической геометрии, а также в широком смысле и современной алгебраической геометрии, являются множества решений систем алгебраических уравнений. Современная алгебраическая геометрия во многом основана на методах общей алгебры для решения задач, возникающих в геометрии.
Алгебраическая кривая, или плоская алгебраическая кривая, — это геометрическое место (множество) точек на плоскости (O;x,y), которое определяется как множество нулей многочлена от двух переменных. Степенью (или порядком) n этой кривой называется степень этого многочлена. Алгебраические кривые степеней n = 1, 2, 3, …, 8 кратко называются прямыми, кониками, кубиками, квартиками, пентиками, секстиками, септиками, октиками соответственно. Например, единичная окружность — это алгебраическая кривая степени 2 (коника), так как она задаётся уравнением x2 + y2 − 1 = 0.
Спорадическая группа — одна из 26 исключительных групп в теореме о классификации простых конечных групп.
Алгебраическое многообразие — центральный объект изучения алгебраической геометрии. Классическое определение алгебраического многообразия — множество решений системы алгебраических уравнений над действительными или комплексными числами. Современные определения обобщают его различными способами, но стараются сохранить геометрическую интуицию, соответствующую этому определению.
Фёдор Алексеевич Богомолов — советский и американский математик, известный своими работами по алгебраической геометрии и теории чисел.
Диаграмма Коксетера — Дынкина — это граф с помеченными числами рёбрами, представляющими пространственные связи между набором зеркальных симметрий . Диаграмма описывает калейдоскопичное построение — каждая «вершина» графа представляет зеркало, а метки ветвей задают величину двугранного угла между двумя зеркалами . Непомеченные ветви неявно подразумевают порядок 3.
Поверхность Гурвица — компактная риманова поверхность, имеющая в точности
- 84(g − 1)
Конфигурация Гессе — конфигурация 9 точек и 12 прямых с тремя точками на каждой прямой и с четырьмя прямыми, проходящих через каждую точку. Её рассматривал Колин Маклорен и изучал Отто Гессе (1844), Конфигурация реализуема в комплексной проективной плоскости как множество точек перегиба эллиптической кривой, но не существует реализации на евклидовой плоскости.
В математике сизигетический пучок или пучок Гессе — это пучок плоских кубических эллиптических кривых на комплексной проективной плоскости, удовлетворяющих уравнению
Фраза группа лиева типа обычно означает конечную группу, которая тесно связана с группой рациональных точек редуктивной линейной алгебраической группы со значениями в конечном поле. Термин «группа лиева типа» не имеет общепризнанного точного определения, но важный набор конечных простых групп лиева типа точное определение имеет и они составляют большинство групп в классификации простых конечных групп.
Группа Янко J2, группа Холла — Янко (HJ) или группа Холла — Янко — Уэллса — это спорадическая группа порядка
- 27 · 33 · 52 · 7 = 604800.
Теорема Гурвица об автоморфизмах ограничивает порядок группы автоморфизмов — сохраняющих ориентацию конформных отображений — компактной римановой поверхности рода g > 1, утверждая, что число таких автоморфизмов не может превышать 84(g − 1). Группа, для которой достигается максимум, называется группой Гурвица, а соответствующая поверхность Римана — поверхностью Гурвица. Поскольку компактные поверхности Римана являются синонимом неособых комплексных проективных алгебраических кривых, поверхность Гурвица может называться также кривой Гурвица. Теорема названа именем Адольфа Гурвица, который доказал её в 1893 году.
Поверхность Хопфа — это компактная комплексная поверхность, получаемая как фактор комплексного векторного пространства C2 \ 0 по свободно действующей конечной группе. Если эта группа является группой целых чисел, поверхность Хопфа называется примарной, в противном случае — вторичной. Первый пример такой поверхности нашёл Хопф с дискретной группой, изоморфной группе целых чисел и генератором, действующим на C2 путём умножения на 2. Это был первый пример компактной комплексной поверхности без кэлеровой метрики.
Поверхность Больцы (кривая Больцы) — компактная риманова поверхность рода 2 с максимальным возможным порядком конформной группы автоморфизмов для этого порядка, а именно, с группой GL2(3) порядка 48. Полная группа автоморфизмов (включая отражения) является полупрямым произведением порядка 96. Аффинная модель поверхности Больцы может быть получена как геометрическое место точек, удовлетворяющих уравнению
Группа Конвея Co1 — это спорадическая простая группа порядка
- = 4157776806543360000
- ≈ 4⋅1018.
Группы Конвея — это три введённые Конвеем спорадические простые группы Co1, Co2 и Co3 вместе со связанной с ними конечной группой Co0.