Секвени́рование биополимеров — определение их аминокислотной или нуклеотидной последовательности. В результате секвенирования получают формальное описание первичной структуры линейной макромолекулы в виде последовательности мономеров в текстовом виде. Размеры секвенируемых участков ДНК обычно не превышают 100 пар нуклеотидов и 1000 пар нуклеотидов при секвенировании по Сенгеру. В результате секвенирования перекрывающихся участков ДНК получают последовательности участков генов, целых генов, тотальной мРНК или полных геномов организмов.

Полимера́зная цепна́я реа́кция (ПЦР) — метод молекулярной биологии, позволяющий добиться значительного увеличения малых концентраций определённых фрагментов нуклеиновой кислоты в биологическом материале (пробе).

Нуклеи́новая кислота — высокомолекулярное органическое соединение, биополимер (полинуклеотид), образованный остатками нуклеотидов. Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации.

Комплемента́рность — взаимное соответствие молекул биополимеров или их фрагментов, обеспечивающее образование связей между пространственно взаимодополняющими (комплементарными) фрагментами молекул или их структурных фрагментов вследствие супрамолекулярных взаимодействий.

Пептидо-нуклеиновые кислоты — это химические вещества, похожие на РНК или ДНК. В настоящее время ПНК не обнаружены в составе живых организмов и получаются путём химического синтеза для использования в некоторых биологических экспериментах и медицине.
Полимеразная цепная реакция в реальном времени — лабораторный метод, основанный на методе полимеразной цепной реакции, позволяющий определять не только присутствие целевой нуклеотидной последовательности в образце, но и измерять количество её копий. Количество амплифицированной ДНК измеряется после каждого цикла амплификации с помощью флуоресцентных меток: зондов или интеркаляторов. Оценка может быть количественной и относительной.
Гибридизация ДНК, гибридизация нуклеиновых кислот — соединение in vitro комплементарных одноцепочечных нуклеиновых кислот в одну молекулу. При полной комплементарности объединение происходит легко и быстро, а в случае частичной некомплементарности слияние цепочек замедляется, что позволяет оценить степень комплементарности. Возможна гибридизация ДНК-ДНК и ДНК-РНК.

Са́узерн-блот, Са́узерн-бло́ттинг, бло́ттинг по Са́узерну, блот Са́зерна, бло́ттинг Са́зерна, са́зерн-блот, са́зерн-бло́ттинг — метод, применяемый в молекулярной биологии для выявления определённой последовательности ДНК в образце. Он заключается в переносе разделённых электрофорезом в агарозном геле фрагментов ДНК на мембранный фильтр и последующем обнаружении в них известной последовательности из ДНК-зонда с помощью гибридизации с ним. Метод называется по имени изобретателя, английского биолога Эдвина Саузерна.

ДНК-микрочип, или ДНК-чип — технология, используемая в молекулярной биологии и медицине. ДНК-микрочип представляет собой множество небольших одноцепочечных молекул — ДНК-зондов, которые ковалентно пришиты к твёрдому основанию. Каждый такой зонд имеет строго определённую последовательность нуклеотидов и место на микрочипе. Одинаковые зонды располагаются вместе, образуя сайт микрочипа. Между сайтом и последовательностью ДНК зонда есть взаимно-однозначное соответствие. ДНК-микрочипы используются для определения ДНК или РНК, которые могут быть как белок-кодирующими, так и не кодировать белки. Измерение генной экспрессии посредством кДНК называется профилем экспрессии, или экспрессионным анализом. На современных микрочипах можно полностью расположить целый геном, каждый известный ген которого будет являться зондом.

Флуоресце́нтная гибридиза́ция in situ, или метод FISH , — цитогенетический метод, который применяют для детекции и определения положения специфической последовательности ДНК на метафазных хромосомах или в интерфазных ядрах in situ. Кроме того, FISH используют для выявления специфических мРНК в образце ткани. В последнем случае метод FISH позволяет установить пространственно-временные особенности экспрессии генов в клетках и тканях.

Полимера́за — фермент, главной биологической функцией которого является синтез полимеров нуклеиновых кислот. ДНК-полимераза и РНК-полимераза синтезируют молекулы ДНК и РНК соответственно, в основном, путём комплементарного копирования родительских цепей ДНК или РНК.
SOLiD — технология нового поколения секвенирования ДНК, развиваемая компанией Life Technologies, коммерчески доступна с 2006 года. SOLiD позволяет секвенировать разом сотни миллионов и даже миллиарды коротких последовательностей.
Секвенирование нового поколения — группа методов определения нуклеотидной последовательности ДНК и РНК для получения формального описания её первичной структуры. Технология методов секвенирования нового поколения позволяет «прочитать» единовременно сразу несколько участков генома, что является главным отличием от более ранних методов секвенирования. NGS осуществляется с помощью повторяющихся циклов удлинения цепи, индуцированного полимеразой, или многократного лигирования олигонуклеотидов. В ходе NGS могут генерироваться до сотен мегабаз и гигабаз нуклеотидных последовательностей за один рабочий цикл.

Флуоресценция нашла широкое применение в различных прикладных биологических и биомедицинских исследованиях. Это физическое явление, суть которого заключается в кратковременном поглощении кванта света флюорофором с последующей быстрой эмиссией другого кванта, который имеет свойства, отличные от исходного. Много направлений в биофизике, молекулярной и клеточной биологии возникли и развиваются именно благодаря внедрению новых методов, базирующихся на флуоресценции. Стоит отметить несколько примеров.

Ксенонуклеиновые кислоты представляют собой синтетические аналоги нуклеиновых кислот, которые имеют сахарный остов, отличный от природных нуклеиновых кислот ДНК и РНК. По состоянию на 2011 год было показано, что по крайней мере шесть типов синтетических сахаров образуют скелеты нуклеиновых кислот, которые могут хранить и извлекать генетическую информацию. В настоящее время проводятся исследования по созданию синтетических полимераз для трансформации XNA. Изучение его производства и применения создало область, известную как ксенобиология.
Простра́нственная транскрипто́мика — это транскриптомная технология, позволяющая визуализировать данные РНК-секвенирования в пространстве.
Лигазная цепная реакция представляет собой метод амплификации ДНК, он отличается от PCR тем, что в нем используется термостабильная лигаза для соединения двух зондов или других молекул вместе, которые затем могут быть амплифицированы с помощью стандартной циклической полимеразной цепной реакции (ПЦР). Каждый цикл приводит к удвоению молекулы нуклеиновой кислоты-мишени. Ключевым преимуществом ЛЦР является большая специфичность по сравнению с ПЦР. Таким образом, для правильной работы ЛЦР требуются два совершенно разных фермента: лигаза для соединения молекул зонда вместе и термостабильная полимераза для амплификации тех молекул, которые участвуют в успешном лигировании. Зонды, участвующие в лигировании, сконструированы таким образом, что 5'-конец одного зонда непосредственно примыкает к 3'-концу другого зонда, тем самым обеспечивая необходимые субстраты групп 3'-ОН и 5'-PO4 для лигазы.

Замкнутая нуклеиновая кислота, также известная как мостиковая нуклеиновая кислота (BNA) и часто называемая недоступной РНК, представляет собой модифицированный нуклеотид РНК, в котором фрагмент рибозы модифицирован дополнительным мостиком, соединяющим 2'-кислородную группу. и 4' углерод. Мостик «запирает» рибозу в 3'- эндо (северной) конформации, которая часто встречается в дуплексах А-формы. Эта структура обеспечивает повышенную устойчивость к ферментативному расщеплению. LNA также предлагает повышенную специфичность и аффинность при спаривании оснований в качестве мономера или компонента олигонуклеотида. Нуклеотиды LNA могут быть смешаны с остатками ДНК или РНК в олигонуклеотиде.

В молекулярной биологии биологии термин «Двойная Спираль» относится к структуре, образованной двухцепочечными молекулами нуклеиновых кислот, такими как ДНК. Двойная спиральная структура комплекса нуклеиновой кислоты возникает как следствие его вторичной структуры и является фундаментальным компонентом, определяющим его третичную структуру. Этот термин вошел в популярную культуру с публикацией в 1968 году книги Джеймса Уотсона « Двойная спираль » : личный отчет об открытии структуры ДНК.