Ги́льбертово простра́нство — обобщение евклидова пространства, допускающее бесконечную размерность и полное по метрике, порождённой скалярным произведением. Названо в честь Давида Гильберта.
Теория чисел или высшая арифметика — раздел математики, первоначально изучавший свойства целых чисел. В современной теории чисел рассматриваются и другие типы чисел — например, алгебраические и трансцендентные, а также функции различного происхождения, которые связаны с арифметикой целых чисел и их обобщений.
Мо́щность, или кардина́льное число́, мно́жества — характеристика множеств, обобщающая понятие количества (числа) элементов конечного множества.
Чи́сла Фибона́ччи — элементы числовой последовательности:
- 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, …,
Тригономе́трия — раздел математики, в котором изучаются тригонометрические функции и их использование в геометрии. Данный термин впервые появился в 1595 г. как название книги немецкого математика Бартоломеуса Питискуса, а сама наука ещё в глубокой древности использовалась для расчётов в астрономии, архитектуре и геодезии для вычисления одних элементов треугольника по данным о других его элементах.
Уравне́ние — равенство вида
- ,
Функция Мёбиуса — мультипликативная арифметическая функция, применяемая в теории чисел и комбинаторике, названа в честь немецкого математика Мёбиуса, который впервые рассмотрел её в 1831 году.
Формула Эйлера связывает комплексную экспоненту с тригонометрическими функциями. Названа в честь Леонарда Эйлера, который её ввёл.
Расстоя́ние Хэ́мминга — число позиций, в которых соответствующие символы двух слов одинаковой длины различны. В более общем случае расстояние Хэмминга применяется для строк одинаковой длины любых q-ичных алфавитов и служит метрикой различия объектов одинаковой размерности.
Математи́ческая фо́рмула в математике, а также физике и других естественных науках — символическая запись высказывания, либо формы высказывания. Формула, наряду с термами, является разновидностью выражения формализованного языка. В более широком смысле формула — всякая чисто символьная запись, противопоставляемая в математике различным выразительным способам, имеющим геометрическую коннотацию: чертежам, графикам, диаграммам, графам и т. п.
Га́уссовы це́лые чи́сла — это комплексные числа, у которых как вещественная, так и мнимая часть — целые числа.
Теорема Ферма — Эйлера гласит:
Полнократное число — положительное целое число, которое делится нацело квадратом каждого своего простого делителя.
Тождество Вандермонда — это следующее тождество для биномиальных коэффициентов:
Тождество Брахмагупты — Фибоначчи, называемое также тождеством Брахмагупты или тождеством Диофанта — алгебраическое тождество, показывающее, как произведение двух сумм квадратов можно представить в виде суммы квадратов :