Вычислительная математика — раздел математики, включающий круг вопросов, связанных с производством разнообразных вычислений. В более узком понимании вычислительная математика — теория численных методов решения типовых математических задач. Современная вычислительная математика включает в круг своих проблем изучение особенностей вычисления с применением компьютеров.
Лине́йная а́лгебра — раздел алгебры, изучающий математические объекты линейной природы: векторные пространства, линейные отображения, системы линейных уравнений. Среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно также считаются составными частями линейной алгебры. Такие объекты как квадратичные и билинейные формы, тензоры и операции как тензорное произведение непосредственно вытекают из изучения линейных пространств, но как таковые относятся к полилинейной алгебре.
Ма́трица — математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля, который представляет собой совокупность строк и столбцов, на пересечении которых находятся его элементы. Количество строк и столбцов задаёт размер матрицы. Матрицу можно также представить в виде функции двух дискретных аргументов. Хотя исторически рассматривались, например, треугольные матрицы, в настоящее время говорят исключительно о матрицах прямоугольной формы, так как они являются наиболее удобными и общими.
Пра́вила Ки́рхгофа — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи.
Система линейных алгебраических уравнений — система уравнений, каждое уравнение в которой является линейным — алгебраическим уравнением первой степени.
Линейное программирование — математическая дисциплина, посвящённая теории и методам решения экстремальных задач на множествах -мерного векторного пространства, задаваемых системами линейных уравнений и неравенств.
Метод наименьших квадратов (МНК) — математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений, для поиска решения в случае обычных нелинейных систем уравнений, для аппроксимации точечных значений некоторой функции. МНК является одним из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным.
Треуго́льная ма́трица — в линейной алгебре квадратная матрица, у которой все элементы, стоящие ниже главной диагонали, равны нулю.
Со́бственный ве́ктор — понятие в линейной алгебре, определяемое для произвольного линейного оператора как ненулевой вектор, применение к которому оператора даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение. Скаляр, на который умножается собственный вектор под действием оператора, называется собственным числом линейного оператора, соответствующим данному собственному вектору. Одним из представлений линейного оператора является квадратная матрица, поэтому собственные векторы и собственные значения часто определяются в контексте использования таких матриц.
Метод Якоби — разновидность метода простой итерации для решения системы линейных алгебраических уравнений. Назван в честь Карла Густава Якоби.
Метод прогонки (англ. tridiagonal matrix algorithm) или алгоритм Томаса используется для решения систем линейных уравнений вида , где — трёхдиагональная матрица. Представляет собой вариант метода последовательного исключения неизвестных. Метод прогонки был предложен И. М. Гельфандом и О. В. Локуциевским, а также независимо другими авторами.
Симплекс-метод — алгоритм решения оптимизационной задачи линейного программирования путём перебора вершин выпуклого многогранника в многомерном пространстве.
Ме́тод Га́усса — Зе́йделя — является классическим итерационным методом решения системы линейных уравнений.
Разложе́ние ма́трицы — представление матрицы в виде произведения матриц, обладающих некоторыми определёнными свойствами. У каждого класса матричных разложений имеется своя область применения; в частности, многие эффективные алгоритмы вычислительной линейной алгебры основаны на построении соответствующих матричных разложений.
Численные (вычислительные) методы — методы решения математических задач в численном виде.
Метод итерации или метод простой итерации — численный метод решения системы линейных алгебраических уравнений. Суть метода заключается в нахождении по приближённому значению величины следующего приближения, являющегося более точным.
Бесконечная система линейных алгебраических уравнений — обобщение понятия системы линейных алгебраических уравнений на случай бесконечного множества неизвестных, определённое методами функционального анализа. Оно имеет смысл не над любым полем, а, например, над вещественными и комплексными числами. Также возможно прямолинейное обобщение методами собственно линейной алгебры, отличное от описанного в статье.