РНК-интерференция — процесс подавления экспрессии гена на стадии транскрипции, трансляции, деаденилирования или деградации мРНК при помощи малых молекул РНК.
16S рРНК — один из трёх основных типов рРНК, образующих основу рибосом прокариот. Цифры в названии рРНК равны значению константы седиментации. Соответственно, для данной молекулы это значение равно 16S. Всего в прокариотических микроорганизмах обнаружено три типа рРНК: 23S и 5S в большой субъединице рибосомы (50S), 16S в малой субъединице рибосомы (30S). Аналогично, константы двух других молекул рРНК равны 23 и 5 S соответственно. Эукариотическим аналогом 16S рРНК является 18S рРНК.
Ми́кроРНК — малые некодирующие молекулы РНК длиной 18—25 нуклеотидов, обнаруженные у растений, животных и некоторых вирусов, принимающие участие в транскрипционной и посттранскрипционной регуляции экспрессии генов путём РНК-интерференции. Помимо внутриклеточной обнаружена внеклеточная (циркулирующая) микроРНК.
Малые ядрышковые РНК — класс малых РНК, участвующих в химических модификациях рибосомных РНК, а также тРНК и малых ядерных РНК. По классификации MeSH малые ядрышковые РНК считаются подгруппой малых ядерных РНК. мякРНК обычно относят к «гидовым» РНК, однако их нельзя путать с гидовыми РНК, направляющими редактирование РНК у трипаносом.
Редакти́рование РНК — процесс, в ходе которого нуклеотиды в новосинтезированной РНК подвергаются химическим модификациям. Редактирование РНК также может включать вставку, делецию или замену нуклеотидов в молекуле РНК. Редактирование РНК — довольно редкий процесс, и типичные этапы процессинга мРНК обычно не рассматриваются как редактирование.
История молекулярной биологии начинается в 1930-х годах с объединения ранее отдельных биологических дисциплин: биохимии, генетики, микробиологии и вирусологии. Кроме того, в надежде, что новая дисциплина откроет возможности понимания фундаментальных основ жизни, в неё пришли многие химики и физики.
G-квадру́плексы (англ. G-quadruplex, а также G-tetrads или G4) — последовательности нуклеиновых кислот, обогащенные гуанином и способные образовывать структуры из четырёх цепей. Цепи нуклеиновых кислот из гуанозиновых олиго- и полинуклеотидов способны связываться друг с другом при наличии моновалентного катиона небольшого размера, чаще всего — калия. С помощью дифракционного анализа было показано, что такие поли(G)-нити представляют собой новый тип укладки ДНК, четырёхцепочечную спираль, где четыре гуаниновых основания из разных цепей образуют плоскую структуру, удерживаемую парными взаимодействиями G-G (рис. 1). Такие структуры отличаются высокой стабильностью в растворе и называются гуаниновыми (G)-квартетами, или G-тетрадами. Каждый G-квартет скреплен в сумме восемью водородными связями, образованными взаимодействием Уотсон-Криковской стороны одного гуанинового основания с Хугстиновской стороной другого. G-квадруплексы могут быть также образованы короткими олигонуклеотидами с соответствующей последовательностью, которую можно схематически записать как GmXnGmXoGmXpGm, где m — количество гуанинов в G-блоке. Эти гуанины обычно непосредственно задействованы в образовании G-тетрад. Xn, Xo и Xp могут быть комбинацией любых остатков, включая G; такие участки формируют петли между G-тетрадами.
Z-ДНК — одна из многих возможных структур двойной спирали ДНК, представляет собой левозакрученную двойную спираль. Z-ДНК является одной из трёх биологически активных двойных спиральных структур ДНК, наряду с А-ДНК и В-ДНК, хотя точные её функции к настоящему моменту не определены.
Шпи́лька — в молекулярной биологии элемент вторичной структуры РНК, а также одноцепочечной ДНК. Шпилька образуется в том случае, когда две последовательности одной и той же цепи комплементарны друг другу и соединяются друг с другом, перегибаясь одна к другой и образуя на конце неспаренный участок — петлю. Такие комплементарные последовательности нередко представляют собой палиндромные последовательности.
Обрабатывающий сплайсинг пре-мРНК фактор 8 — белок, который у человека кодируется геном PRPF8.
Хеликаза малого ядерного рибонуклеопротеина 200 кДа (U5) — фермент, который в организме человека кодируется геном SNRNP200.
Субъединица RPB1 ДНК-управляемой РНК-полимеразы II , также известная как RPB1 , — фермент, кодируемый у человека геном POLR2A .
Субъединица RPB3 ДНК-управляемой РНК-полимеразы II — фермент, кодируемый у человека геном POLR2C .
Субъединица RPABC2 ДНК-управляемой РНК-полимеразы I, II и III — белок, кодируемый у человека, геном POLR2F .
Субъединица RPB7 ДНК-управляемой РНК-полимеразы II — фермент, кодируемый у человека геном POLR2G .
Субъединица RPABC3 ДНК-управляемой РНК-полимеразы I, II и III — белок, кодируемый у человека геном POLR2H .
Субъединица RPABC1 ДНК-зависимой РНК-полимеразы I, II и III — белок, кодируемый у человека геном POLR2E .
Субъединица RPABC5 ДНК-управляемых РНК-полимераз I, II и III — белок, кодируемый у человека геном POLR2L .
РНК-термо́метр, или РНК-термосе́нсор — температурочувствительная некодирующая РНК, которая принимает участие в регуляции экспрессии генов. РНК-термометры, как правило, регулируют гены, которые необходимы для ответа на тепловой или холодовой шок, однако показано их участие в регуляции длительного голодания и патогенности.
РНК-терапия — это новое направление медицины с использованием РНК в качестве лекарственного средства. Препараты на основе РНК относительно просто производить, при этом они могут воздействовать на ранее не поддающиеся медикаментозному лечению патологические процессы. Трудность РНК-терапии заключается в эффективной доставке интактных молекул РНК внутрь клеток в подлежащую лечению ткань, не вызывая побочных эффектов.