
Бе́та-распа́д нейтро́на — спонтанное превращение свободного нейтрона в протон с излучением β-частицы (электрона) и электронного антинейтрино:

Двойно́й электро́нный захва́т (2ε-захват, εε-захват, ECEC-распад) — один из видов двойного бета-распада атомных ядер, при котором ядро захватывает два электрона из атомной электронной оболочки. Если конкретизируется электронная оболочка (K, L, M и т. д.), с которой захватываются электроны, то говорят о двойном К-захвате и т. д. Теоретические предсказания указывают на более высокую, при прочих равных условиях, вероятность 2К-захвата, чем захвата с более высоких оболочек; возможен также захват двух электронов с разных электронных оболочек, например K и L.

О́стров стаби́льности в ядерной физике — гипотетическая трансурановая область на карте изотопов, для которой вследствие предельного заполнения в ядре протонных и нейтронных оболочек, время жизни изотопов значительно превышает время жизни «соседних» трансурановых изотопов, делая возможным долгоживущее и стабильное существование таких элементов, в том числе в природе.
Тетранейтро́н — гипотетическая стабильная частица, состоящая из четырёх нейтронов. Согласно общепринятым на начало XXI века теориям ядерной физики, вероятность существования такой частицы ничтожна; с другой стороны, существуют экспериментальные данные, которые могут служить указанием на существование тетранейтрона — эксперимент Франсиско-Мигеля Маркеса и его коллег на Большом национальном ускорителе тяжелых ионов в Кане в 2001 году, в котором использовался новый метод обнаружения распада ядер бериллия и лития. Попытки других учёных повторить результат Маркеса окончились безуспешно, но в 2016 году указания на существование тетранейтрона были получены другой группой исследователей в ходе экспериментов по другой методике.

В физике элементарных частиц майора́новский фермио́н, или фермио́н Майора́ны — фермион, который является своей собственной античастицей. Существование таких частиц было впервые рассмотрено итальянским физиком Этторе Майораной в 1937 году. В экспериментах с полупроводниковыми нанопроволоками наблюдались квазичастицы, обладающие свойствами майорановского фермиона. Экспериментальное обнаружение майорановских частиц как в физике высоких энергий, так и в области физики твёрдого тела приведёт к важным последствиям для науки в целом.
rp-Проце́сс — процесс быстрого захвата протонов атомными ядрами в астрофизических условиях, один из процессов звёздного нуклеосинтеза, ответственных за рождение многих элементов тяжелее железа, встречающихся во Вселенной. Является «зеркальным» аналогом r-процесса, происходящего при быстром захвате нейтронов. В отличие от s- и r-процессов, rp-процесс проходит на протонно-избыточных (нейтрон-дефицитных) ядрах. Условием осуществления rp-процесса является наличие настолько плотного и высокоэнергичного потока протонов, что среднее время между двумя последовательными захватами протона данным ядром меньше, чем среднее время жизни ядра по отношению к электронному захвату, позитронному распаду и другим радиоактивным распадам. Отличие от «медленного» p-процесса, происходящего при меньших плотностях потоков протонов, состоит в том, что ядро после захвата протона не успевает распасться путём последовательных электронных захватов и позитронных распадов в бета-стабильное ядро; путь rp-процесса идёт по области β+-радиоактивных ядер, не спускаясь к бета-стабильным ядрам. Верхний предел rp-процесса пока точно не установлен

Изото́пы радо́на — разновидности атомов химического элемента радона с атомным номером 86, имеющие разное содержание нейтронов в ядре.
Фи-мезон — элементарная частица со скрытой странностью и изотопическим спином 0, представляющая собой мезонные резонансы с чётным орбитальным квантовым числом. Она образует синглет, дополняющий октет векторных мезонов, то есть является аналогом η′-мезона.
Изото́пы коперни́ция — разновидности атомов химического элемента коперниция, имеющие разное содержание нейтронов в ядре. На данный момент известны 6 изотопов коперниция и ещё 2 окончательно не подтверждённых возбуждённых изомерных состояния некоторых его нуклидов. В природе ни один из его изотопов не обнаружен.
Изотопы калия — разновидности химического элемента калия с разным количеством нейтронов в атомном ядре. Известны изотопы калия с массовыми числами от 33 до 59 и 5 ядерных изомеров.
Изотопы стронция — разновидности химического элемента стронция, имеющие разное количество нейтронов в ядре. Известны изотопы стронция с массовыми числами от 73 до 105 и 6 ядерных изомеров.
Изотопы протактиния — разновидности атомов химического элемента протактиния, имеющие разное содержание нейтронов в ядре.
Изотопы нептуния — разновидности атомов химического элемента нептуния, имеющие разное содержание нейтронов в ядре.
Изотопы дармштадтия — разновидности атомов химического элемента дармштадтия, имеющие разное содержание нейтронов в ядре.
Изотопы ниобия — разновидности атомов химического элемента ниобия, имеющие разное содержание нейтронов в ядре.
Глюбо́л — гипотетическая составная частица, образованная только из глюонов, удерживаемых в «глюонном мешке» вследствие сильного (цветового) взаимодействия между ними, и синглетная (нейтральная) по цвету. Ожидается, что глюболы имеют массу от 1 до 2 ГэВ; по более поздним расчётам в рамках решёточной модели квантовой хромодинамики масса основного состояния псевдоскалярного глюбола предсказывается в диапазоне 2,3—2,6 ГэВ.

Изото́пы оганесо́на — разновидности атомов (и ядер) химического элемента оганесона, имеющие разное содержание нейтронов в ядре. В природе ни один из его изотопов не обнаружен. Один из изотопов, 294Og, получен в ходе эксперимента, который проводился тремя циклами в феврале-июне 2002, феврале-марте 2005 и мае-июне 2005 года группой физиков под руководством Юрия Оганесяна в ОИЯИ (Дубна, Россия) совместно с физиками из Ливерморской национальной лаборатории. Ядра кальция-48 (в общей сложности 4,1·1019 ионов), разогнанные на ускорителе тяжёлых ионов до энергии около 30 МэВ, попадали на тонкую мишень из калифорния-249. Оганесон-294 образовывался в следующей реакции (её сечение очень мало: 0,5+1,6
−0,3 пикобарн):


Дипрото́н — нестабильная частица, состоящая из двух связанных протонов, может рассматриваться как ядро изотопа гелия-2. Дипротон состоит из двух протонов. Экспериментально наблюдался в распаде возбуждённого состояния 18Ne.
Гексакварк — в физике элементарных частиц большое семейство гипотетических частиц, каждая из которых состоит из шести кварков или антикварков любых ароматов. Шесть составляющих кварков в любой из нескольких комбинаций могут дать нулевой цветовой заряд; например гексакварк может представлять собой два связанных друг с другом бариона (дибарион), или три кварка и три антикварка. По прогнозам, после образования дибарионы будут достаточно стабильными.

Эксперимент Belle был проведён Belle Collaboration, международным сообществом из более чем 400 физиков и инженеров, в Исследовательской организации ускорителей высоких энергий (KEK) в Цукубе, префектура Ибараки, Япония. Эксперимент проводился с 1999 по 2010 год.