Диспе́рсия све́та (разложение света; светорассеяние[1]) — это совокупность явлений, обусловленных зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, что то же самое, зависимостью фазовой скорости света в веществе от частоты (или длины волны). Экспериментально открыта Исааком Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее[2].
Один из самых наглядных примеров дисперсии — разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является различие фазовых скоростей распространения лучей света c различной длиной волны в прозрачном веществе — оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и, следовательно, цвета). Обычно, чем меньше длина световой волны, тем больше показатель преломления среды для неё и тем меньше фазовая скорость волны в среде:
у света красного цвета фазовая скорость распространения в среде максимальна, а степень преломления — минимальна,
у света фиолетового цвета фазовая скорость распространения в среде минимальна, а степень преломления — максимальна.
Однако в некоторых веществах (например, в парах иода) наблюдается эффект аномальной дисперсии, при котором синие лучи преломляются меньше, чем красные, а другие лучи поглощаются веществом и от наблюдения ускользают. Говоря строже, аномальная дисперсия широко распространена, например, она наблюдается практически у всех газов на частотах вблизи линий поглощения, однако у паров иода она достаточно удобна для наблюдения в оптическом диапазоне, где они очень сильно поглощают свет.
Дисперсия света позволила впервые вполне убедительно показать составную природу белого света.
Белый свет разлагается в спектр в результате прохождения через дифракционную решётку или отражения от неё (это не связано с явлением дисперсии, а объясняется природой дифракции). Дифракционный и призматический спектры несколько отличаются: призматический спектр сжат в красной части и растянут в фиолетовой и располагается в порядке убывания длины волны: от красного к фиолетовому; нормальный (дифракционный) спектр — равномерный во всех областях и располагается в порядке возрастания длин волн: от фиолетового к красному.
По аналогии с дисперсией света, также дисперсией называются и сходные явления зависимости распространения волн любой другой природы от длины волны (или частоты). По этой причине, например, термин закон дисперсии, применяемый как название количественного соотношения, связывающего частоту и волновое число, применяется не только к электромагнитной волне, но к любому волновому процессу.
Дисперсией объясняется факт появления радуги после дождя (точнее тот факт, что радуга разноцветная, а не белая).
Дисперсия является причиной хроматических аберраций — одних из аберраций оптических систем, в том числе фотографических и видеообъективов.
Огюстен Коши предложил эмпирическую формулу для аппроксимации зависимости показателя преломления среды от длины волны:
,
где — длина волны в вакууме; a, b, c — постоянные, значения которых для каждого материала должны быть определены в опыте. В большинстве случаев можно ограничиться двумя первыми членами формулы Коши. Впоследствии были предложены другие более точные, но и одновременно более сложные, формулы аппроксимации.
Дисперсия света в природе и искусстве
Радуга, чьи цвета обусловлены дисперсией, — один из ключевых образов культуры и искусства.
Благодаря дисперсии света можно наблюдать цветную «игру света» на гранях бриллианта и других прозрачных гранёных предметах или материалах.
В той или иной степени радужные эффекты обнаруживаются достаточно часто при прохождении света через почти любые прозрачные предметы. В искусстве они могут специально усиливаться и/или подчёркиваться.
Разложение света в спектр (вследствие дисперсии) при преломлении в призме — довольно распространённая тема в изобразительном искусстве. Например, на обложке альбома The Dark Side of the Moon группы Pink Floyd изображено преломление света в призме с разложением в спектр.
Обобщенная формулировка высоких порядков дисперсии - оптика Лаха-Лагерра
Описание хроматической дисперсии с помощью пертурбативного подхода через коэффициенты Тейлора подходит для задач оптимизации, где необходимо сбалансировать дисперсию от нескольких различных систем. Например, в лазерных усилителях, импульсы сначала растягиваются во времени, чтобы избежать оптического повреждения кристаллов. Затем, в процессе усиления энергии, импульсы накапливают неизбежную линейную и нелинейную фазу, проходя через различные материалы. Наконец, импульсы сжимаются в различных типах компрессоров. Для того чтобы сбросить любые остаточные высшие порядки в накопленной фазе, отдельные порядки дисперсии обычно измеряются и балансируются. Для однородных систем такое пертурбативное описание часто не требуется (например, для распространения импульса в волноводах или оптических волокнах). Дисперсионные порядки сводятся к аналитическим уравнениям, которые идентичны преобразованиям типа Лаха-Лагера[3][4].
Порядки дисперсии определяются разложением Тейлора фазы или волнового вектора.
Производные дисперсии для волнового вектора и фазы могут быть выражены как:
,
Производные любой дифференцируемой функции в пространстве длин волн или частот определяются через преобразование Лаха как:
Матричные элементы преобразования являются коэффициентами Лаха:
Записанное для дисперсии групповой скорости GDD, приведенное выше выражение утверждает, что постоянная длины волны GGD будет иметь нулевые высшие порядки. Высшие порядки, полученные из GDD, являются:
Подстановка уравнения (2), выраженного для показателя преломления или оптического пути , в уравнение (1) приводит к аналитическим выражениям для порядков дисперсии. В общем случае дисперсия порядка POD является преобразованием типа Лагерра отрицательного второго порядка:
Матричные элементы преобразований представляют собой беззнаковые коэффициенты Лагерра порядка минус 2 и имеют вид:
Первые десять порядков дисперсии, записанные в явном виде для волнового вектора:
Групповой показатель преломления определяется как: .
В явном виде, записанные для фазы , первые десять порядков дисперсии могут быть выражены как функция длины волны с помощью преобразований Лаха (уравнение (2)) в виде:
Выслоух В. А.Дисперсия света // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 650—652. — 707 с. — 100 000 экз.
Уравнение теплопроводности — дифференциальное уравнение в частных производных второго порядка, которое описывает распределение температуры в заданной области пространства и ее изменение во времени.
Интерфере́нция све́та — интерференция электромагнитных волн — перераспределение интенсивности света в результате наложения (суперпозиции) нескольких световых волн. Это явление обычно характеризуется чередующимися в пространстве максимумами и минимумами интенсивности света. Конкретный вид такого распределения интенсивности света в пространстве или на экране, куда падает свет, называется интерференционной картиной.
Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.
Де́льта-фу́нкция — обобщённая функция, которая позволяет записать точечное воздействие, а также пространственную плотность физических величин, сосредоточенных или приложенных в одной точке.
В термодинамике и физике твёрдого тела модель Дебая — метод, развитый Дебаем в 1912 г. для оценки фононного вклада в теплоёмкость твёрдых тел. Модель Дебая рассматривает колебания кристаллической решётки как газ квазичастиц — фононов. Эта модель правильно предсказывает теплоёмкость при низких температурах, которая, согласно закону Дебая, пропорциональна . В пределе высоких температур теплоёмкость стремится к 3R, согласно закону Дюлонга — Пти.
Однородная функция степени — числовая функция такая, что для любого из области определения функции и любого выполняется равенство:
Волново́е число́ — быстрота роста фазы волны по координате в пространстве:
.
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики.
Эллипти́ческий интегра́л — некоторая функция над полем действительных или комплексных чисел, которая может быть формально представлена в следующем виде:
,
Квазичастицы в графене обладают линейным законом дисперсии вблизи дираковских точек и их свойства полностью описываются уравнением Дирака. Сами дираковские точки находятся на краях зоны Бриллюэна, где электроны обладают большим волновым вектором. Если пренебречь процессами переброса между долинами, то этот большой вектор никак не влияет на транспорт в низкоэнергетическом приближении, поэтому волновой вектор, фигурирующий в уравнении Дирака, отсчитывают от дираковских точек и уравнение Дирака записывают для разных долин отдельно.
Вынужденные колебания — колебания, происходящие под воздействием внешних периодических сил.
Уравне́ние Гельмго́льца — это эллиптическое дифференциальное уравнение в частных производных:
Интегра́л Пуассо́на — общее название математических формул, выражающих решение краевой задачи или начальной задачи для уравнений с частными производными некоторых типов.
Лине́йная часто́тная модуля́́ция (ЛЧМ) сигнала — это вид частотной модуляции, при которой частота несущего сигнала в зависимости от времени изменяется по линейному закону.
В байесовской статистике априорная вероятность Джеффри, по имени Гарольда Джеффри — неинформативная (объективная) априорная вероятность в пространстве параметра, пропорциональная квадратному корню из детерминанта информации Фишера:
К вейвлет-функциям с компактным носителем относятся вейвлеты Добеши, койфлеты и симмлеты. Метод построения вейвлет-функций с компактным носителем принадлежит Ингрид Добеши. Койфлеты являются частным случаем вейвлетов Добеши с нулевыми моментами скейлинг-функции.
Дисперсия групповых скоростей — аналог дисперсии фазовой скорости для квазимонохроматических импульсов, играет ключевую роль при распространении широкополосных импульсов в диспергирующей среде, такой как, например, стекло или вода.
Пло́ская волна́ — волна, фронт которой плоский.
Принцип максимума энтропии утверждает, что наиболее характерными распределениями вероятностей состояний неопределенной среды являются такие распределения, которые максимизируют выбранную меру неопределенности при заданной информации о «поведении» среды. Впервые подобный подход использовал Д.Гиббс для нахождения экстремальных функций распределений физических ансамблей частиц. Впоследствии Э.Джейнсом был предложен формализм восстановления неизвестных законов распределения случайных величин при наличии ограничений из условий максимума энтропии Шеннона.
Взаимодействие четвёртой степени — раздел квантовой теории поля, где скалярное поле обладает самодействием в виде φ4. Другие типы взаимодействий четвёртой степени можно найти в разделе четырёхфермионных взаимодействий. Классическое свободное скалярное поле удовлетворяет уравнению Клейна — Гордона. Если скалярное поле обозначено , взаимодействие четвёртой степени добавляет потенциальную энергию поля в виде к лагранжевой плотности. Константа связи безразмерна в 4-мерном пространстве-времени.
Эта страница основана на статье Википедии. Текст доступен на условиях лицензии CC BY-SA 4.0; могут применяться дополнительные условия. Изображения, видео и звуки доступны по их собственным лицензиям.