О́птика — раздел физики, изучающий поведение и свойства света, в том числе его взаимодействие с веществом и создание инструментов, которые его используют или детектируют. Оптика обычно описывает поведение видимого, ультрафиолетового и инфракрасного излучения. Поскольку свет представляет собой электромагнитную волну, другие формы электромагнитного излучения, такие как рентгеновские лучи, микроволны и радиоволны, обладают аналогичными свойствами.
Электромагни́тные во́лны / электромагни́тное излуче́ние (ЭМИ) — распространяющееся в пространстве возмущение электромагнитного поля.
Длина́ волны́ — расстояние между двумя ближайшими друг к другу точками в пространстве, в которых колебания происходят в одинаковой фазе.
Фотонный кристалл — твердотельная структура с периодически изменяющейся диэлектрической проницаемостью либо неоднородностью, период которой сравним с длиной волны света.
Магнетро́н — электронный электровакуумный прибор, величина протекающего тока в котором управляется электрическим и магнитным полем. Частным случаем реализации прибора является вариант с выполнением анодного блока в виде резонаторных структур. Такая конструкция наделяет магнетрон способностью к генерации СВЧ-излучения при взаимодействии потока электронов с электрической составляющей сверхвысокочастотного поля в пространстве, где постоянное магнитное поле перпендикулярно постоянному электрическому полю.
Анте́нна — преобразователь волновых полей; в традиционном понимании — устройство, предназначенное для излучения или приёма радиоволн.
Микроволновое излучение (микроволны) — область спектра электромагнитного излучения с длинами волн от 1 м до 1 мм, соответствующими частотам от 300 МГц и до 300 ГГц соответственно. Различные источники используют разные диапазоны частот для микроволн; вышеупомянутое широкое определение включает диапазоны: УВЧ, СВЧ и КВЧ. Более распространённое определение в радиотехнике — диапазон от 1 до 100 ГГц. Частоты микроволнового излучения часто обозначаются терминами IEEE для радиолокационных диапазонов: S, C, X, Ku, K или Ka диапазон или аналогичными обозначениями НАТО или ЕС.
Волново́д — искусственный или естественный направляющий канал, в котором может распространяться волна. При этом поток мощности, переносимый волной, сосредоточен внутри этого канала или в области пространства, непосредственно примыкающей к каналу.
Радиоволново́д — канал (волновод) для распространения радиоволн.
Направленный ответвитель — устройство для ответвления части электромагнитной энергии из основного канала передачи во вспомогательный. Направленный ответвитель (НО) представляет собой два отрезка линий передачи, связанных между собой определённым образом, основная линия называется первичной, вспомогательная — вторичной. Для нормальной работы НО один из концов вторичной линии должен быть заглушён согласованной нагрузкой, со второго снимается ответвлённый сигнал, в зависимости от того, какую волну в первичной линии надо ответвить — падающую или отражённую, выбирается, какое плечо вторичной линии будет рабочим. Математически свойства направленных ответвителей описываются с помощью S-матриц.
Квазиоптика — область радиофизики, задача которой освоение миллиметрового и субмиллиметрового диапазона волн. В субмиллиметровом диапазоне канализация волн по волноводам невозможна из-за большого затухания в них, поэтому используются так называемые лучеводы, в которых распространяются широкие волновые пучки.
Волоко́нный ла́зер — лазер, активная среда и, возможно, резонатор которого являются элементами оптического волокна. При полностью волоконной реализации такой лазер называется цельноволоконным, при комбинированном использовании волоконных и других элементов в конструкции лазера он называется волоконно-дискретным или гибридным. Волоконные лазеры применяются в промышленности для резки металлов и маркировки продукции, сварке и микрообработке металлов, линиях волоконно-оптической связи. Их основными преимуществами являются высокое оптическое качество излучения, небольшие габариты и возможность встраивания в волоконные линии.
Волоконно-оптическая связь, получившая развитие после изобретения в 1960 году лазера — высококогерентного источника излучения оптического диапазона, и демонстрации в 1970 году оптических волокон с низкими потерями, позволивших осуществлять передачу информации на средние расстояния, на сегодня является основным видом высокоскоростной коммуникаций на длинные и сверхдлинные дистанции. Использование в качестве носителей информации коротких лазерных импульсов инфракрасного диапазона обеспечивает скорость передачи в несколько десятков Гбит/c, что превышает максимальные скорости радиосвязи и связи посредством электрических кабелей. Результатом стало создание трансокеанских и трансконтинентальных линий связи протяженностью в десятки тысяч километров. Следует ожидать, что в ближайшие годы волоконно-оптические линии связи (ВОЛС) заменят все остальные виды магистральных линий передачи информации. В связи с этим встает вопрос о защищенности ВОЛС.
Металлический волновод — волновод, изготавливаемый из латуни, алюминия и покрытый изнутри серебром или другим хорошо проводящим металлом.
Кольцево́й резона́тор — оптический резонатор, в котором свет распространяется по замкнутой траектории в одном направлении. Объемные кольцевые резонаторы состоят из трёх или более зеркал, ориентированных так, что свет последовательно отражается от каждого из них совершая полный оборот. Кольцевые резонаторы находят широкое применение в лазерных гироскопах и лазерах. В волоконных лазерах применяют специальные конструкции волоконных кольцевых резонаторов, обычно имеющих вид замкнутого в кольцо оптического волокна с WDM-ответвителями для ввода излучения накачки и вывода генерируемого излучения.
Интегральная оптика — раздел оптики, в котором рассматривается передача оптических волн через планарные оптические волноводы. В более широком смысле, интегральная оптика — это раздел современной оптики, занимающийся исследованием процессов распространения оптических волн в планарных тонкопленочных диэлектрических волноводах, проблемами ввода (вывода) излучения в такие волноводы, а также вопросами генерации и детектирования световых пучков в таких волноводах и управления ими с целью создания новых интегрально-оптических схем, которые аналогичны по своему функциональному назначению существующим интегральным электронным схемам на полупроводниках.
Разряд на поверхностной волне, англ. Surface-wave-sustained plasmas (SWP) — форма газового разряда, возбуждаемого поверхностными электромагнитными волнами. Поверхностные электромагнитные волны, распространяющиеся вдоль границы плазмы могут ей эффективно поглощаться, поддерживая таким образом разряд. Разряд на поверхностной волне позволяет получать однородную плазму в объёме, поперечные размеры которых превосходят несколько длин волн возбуждающего излучения. Разряд на поверхностной волне не следует путать с СВЧ разрядом на поверхности диэлектрика.
Плазмоника или наноплазмоника относится к генерации, обнаружению и обработке сигналов на оптических частотах вдоль границ раздела металл-диэлектрик в нанометровом диапазоне. Так же как и фотоника, плазмоника следует тенденции миниатюризации оптических устройств и находит применение в зондировании, микроскопии, оптической связи и биофотонике.