Систе́ма аксио́м Це́рмело — Фре́нкеля (ZF) — наиболее широко используемый вариант аксиоматической теории множеств, являющийся фактическим стандартом для оснований математики. Сформулирована Эрнстом Цермело в 1908 году как средство преодоления парадоксов теории множеств, и уточнена Абрахамом Френкелем в 1921 году.
В квантовой механике задача о части́це в одноме́рном периоди́ческом потенциа́ле — идеализированная задача, которая может быть решена аналитически, без упрощений. При решении предполагается, что функция потенциала задана на всем бесконечном пространстве и периодична, то есть обладает трансляционной симметрией, что, вообще говоря, не выполняется для реальных кристаллов, где всегда существует как минимум один дефект — поверхность кристалла.
Це́пь Ма́ркова — последовательность случайных событий с конечным или счётным числом исходов, характеризующаяся тем свойством, что, говоря нестрого, при фиксированном настоящем будущее независимо от прошлого. Названа в честь А. А. Маркова (старшего), который впервые ввёл это понятие в работе 1906 года.
Мультиномиа́льное (полиномиа́льное) распределе́ние в теории вероятностей — это обобщение биномиального распределения на случай независимых испытаний случайного эксперимента с несколькими возможными исходами.
Ме́тод моме́нтов — метод оценки неизвестных параметров распределений в математической статистике и эконометрике, основанный на предполагаемых свойствах моментов. Идея метода заключается в замене истинных соотношений выборочными аналогами.
Периоди́ческое состоя́ние — это такое состояние цепи Маркова, которое навещается цепью только через промежутки времени, кратные фиксированному числу.
Возвра́тное состоя́ние — это состояние марковской цепи, посещаемое ею бесконечное число раз.
Стациона́рное распределе́ние цепи Маркова — это такое распределение вероятности, которое не меняется с течением времени.
Суще́ственное состоя́ние — это такое состояние цепи Маркова, покинув которое, она всегда может в него вернуться.
Цикли́ческие подкла́ссы — подмножества неразложимого периодического класса цепи Маркова такие, что цепь проходит их один за другим по порядку.
Тавтологией в логике называется тождественно истинное высказывание, инвариантное относительно значений своих компонентов.
Регрессио́нный анализ — набор статистических методов исследования влияния одной или нескольких независимых переменных на зависимую переменную . Независимые переменные иначе называют регрессорами или предикторами, а зависимые переменные — критериальными или регрессантами. Терминология зависимых и независимых переменных отражает лишь математическую зависимость переменных, а не причинно-следственные отношения. Наиболее распространённый вид регрессионного анализа — линейная регрессия, когда находят линейную функцию, которая, согласно определённым математическим критериям, наиболее соответствует данным. Например, в методе наименьших квадратов вычисляется прямая, сумма квадратов между которой и данными минимальна.
Полином Жегалкина — многочлен над полем , то есть полином с коэффициентами вида 0 и 1, где в качестве произведения берётся конъюнкция, а в качестве сложения — исключающее или. Полином был предложен в 1927 году Иваном Жегалкиным в качестве удобного средства для представления функций булевой логики. В зарубежной литературе представление в виде полинома Жегалкина обычно называется алгебраической нормальной формой (АНФ).
Тео́рия автомати́ческого управле́ния (ТАУ) — научная дисциплина, которая изучает процессы автоматического управления объектами разной физической природы. При этом при помощи математических средств выявляются свойства систем автоматического управления и разрабатываются рекомендации по их проектированию.
Аксиомой объёмности называется следующее высказывание теории множеств:
Схемой преобразования [множеств] называется следующее высказывание теории множеств:
- , где
Арифметическое множество — множество натуральных чисел , которое может быть определено формулой в языке арифметики первого порядка, то есть если существует такая формула с одной свободной переменной , что . Аналогично, множество кортежей натуральных чисел называется арифметическим, если существует такая формула , что . Также можно говорить об арифметических множествах кортежей натуральных чисел, конечных последовательностей натуральных чисел, формул и, вообще, об арифметических множествах любых объектов, кодируемых натуральными числами.
Разложение Шура — разложение матрицы на унитарную, верхнюю треугольную и обратную унитарную матрицы, названное именем Исая Шура.
Константа Кемени — среднее число шагов перехода в случайно выбранное состояние конечной цепи Маркова, находящейся в стационарном состоянии, из некоторого исходного состояния . Эта величина не зависит от номера исходного состояния и является инвариантом цепи Маркова.